11. Probability-theoretic Investigations on Inheritance. $X^{\prime} \mathrm{I}_{4}$. Further Discussions on Interchange of Infants

By Yûsaku Komatu

Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo Medical and Dental University (Comm. by T. Furuhata, m.J.a., Jan. 12, 1953)

8. Comparison between several probabilities

We state here some inequalities supplementing those mentioned in §3. From their respective definitions, we get immediately the inequalities

$$
\begin{equation*}
\Psi(i j) \leqq \Phi_{*}(i j), \quad \Psi_{*}(i j, h k) \leqq \Phi(i j, h k) \tag{8.1}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
F(i j) \leqq \mathfrak{F}(i j), \quad \mathscr{S}(i j, h k) \leqq G(i j, h k) . \tag{8.2}
\end{equation*}
$$

We thus conclude the inequalities $\Psi \leqq \Phi_{*}, \Psi_{*} \leqq \Phi$ and hence

$$
\begin{equation*}
F \leqq \mathfrak{F} \equiv(\mathfrak{G} \leqq G, \tag{8.3}
\end{equation*}
$$

which are also evident by definitions. These inequalities can also be verified directly from their final expressions. For instance, by rearranging the terms in $\mathfrak{F}-F$, we get

$$
\begin{gathered}
\mathfrak{F}-F=\left(S_{2}-S_{3}\right)+3\left(S_{3}-S_{4}\right)+3\left(S_{2}^{2}-S_{4}\right)-\left(S_{4}-S_{5}\right)-18\left(S_{2} S_{3}-S_{5}\right) \\
\quad-\left(S_{5}-S_{6}\right)-9 S_{2}\left(S_{2}^{2}-S_{4}\right)+17\left(S_{2} S_{4}-S_{6}\right)+8\left(S_{3}^{2}-S_{6}\right)+8 S_{3}\left(S_{2}^{2}-S_{4}\right) \\
+4\left(S_{3} S_{4}-S_{7}\right)-12\left(S_{2} S_{5}-S_{7}\right) \\
=\sum_{i, j}^{\prime} p_{i} p_{j}\left\{\left(p_{i}+p_{j}\right)+3\left(p_{i}^{2}+p_{j}^{2}\right)+6 p_{i} p_{j}-\left(p_{i}^{3}+p_{j}^{3}\right)-18 p_{i} p_{j}\left(p_{i}+p_{j}\right)\right. \\
-\left(p_{i}^{4}+p_{j}^{4}\right)-18 S_{2} p_{i} p_{j}+17 p_{i} p_{j}\left(p_{i}^{2}+p_{j}^{2}\right)+16 p_{i}^{2} p_{j}^{2}+16 S_{3} p_{i} p_{j} \\
\left.+4 p_{i}^{2} p_{j}^{2}\left(p_{i}+p_{j}\right)-12 p_{i} p_{j}\left(p_{i}^{3}+p_{j}^{3}\right)\right\} \\
=\sum_{i, j}^{\prime} p_{i} p_{j}\left\{2\left(p_{i}^{2}+p_{j}^{2}\right)\left(p_{i}-p_{j}\right)^{2}+4 p_{i} p_{j}\left(p_{i}+p_{j}\right)\left(p_{i}^{2}+p_{j}^{2}\right)\right. \\
+18 p_{i} p_{j}\left(\left(1-p_{i}-p_{j}\right)^{2}-\left(S_{2}-p_{i}^{2}-p_{j}^{2}\right)\right) \\
+16 p_{i} p_{j}\left(S_{3}-p_{i}^{3}-p_{j}^{3}\right)+\left(p_{i}+p_{j}\right)\left(8\left(p_{i}^{2}+p_{j}^{2}\right)+p_{i} p_{j}\right)\left(1-p_{i}-p_{j}\right) \\
\left.+6\left(\left(p_{i}-p_{j}\right)^{2}+p_{i} p_{j}\right)\left(1-p_{i}-p_{j}\right)^{2}+\left(p_{i}+p_{j}\right)\left(1-p_{i}-p_{j}\right)^{3}\right\},
\end{gathered}
$$

the last member remaining evidently always non-negative, since

$$
\left(1-p_{i}-p_{j}\right)^{2}-\left(S_{2}-p_{i}^{2}-p_{j}^{2}\right)=\sum_{h, k \neq i, j}^{\prime} 2 p_{h} p_{k} \geqq 0
$$

For the difference $G-(\mathcal{G}$, we get similarly

$$
\begin{aligned}
& G-(5)= 2 S_{2}\left(S_{2}-S_{3}\right)+2\left(S_{2} S_{3}-S_{5}\right) \\
&+2 S_{2}\left(S_{3}-S_{4}\right) \\
&+2 S_{2}\left(S_{2}^{2}-S_{4}\right)-2\left(S_{5}-S_{6}\right) \\
&- 8\left(S_{2} S_{4}-S_{6}\right)-5\left(S_{3}^{2}-S_{6}\right)-16 S_{2}\left(S_{2} S_{3}-S_{5}\right) \\
&+12\left(S_{2} S_{5}-S_{7}\right)+16\left(S_{3} S_{4}-S_{7}\right) \\
&-4 S_{2}^{2}\left(S_{2}^{2}-S_{4}\right)+12 S_{2}\left(S_{2} S_{4}-S_{6}\right)-5\left(S_{4}^{2}-S_{8}\right)-4\left(S_{2} S_{6}-S_{8}\right)
\end{aligned}
$$

