# 10. Probability-theoretic Investigations on Inheritance. $\mathrm{XVI}_{3}$. Further Discussions on Interchange of Infants 

By Yûsaku Komatu<br>Department of Mathematics, Tokyo Institute of Technology and Department of Legal Medicine, Tokyo Medical and Dental University

(Comm. by T. Furuhata, m.J.a., Jan. 12, 1953)

## 6. An intermediate problem

The discussions in the previous sections have based upon a pair consisting of mother and an apparent child as the unit of consideration, while those in the preceding chapter concerned a triple consisting of parents and an apparent child. We shall now discuss a problem of detecting the interchange of infants which is situated in an intermediate position.

Let now a triple consisting of a child and its parents and a pair consisting of a child and its mother be given under a suspicion of interchange of infants. We then consider the probability of an event that the decision is possible under a supposition of actual interchange; cf. the remark stated at the end of $\S 1$ and also at the beginning of $\S 6$ in XV. The basic tools of attack on the present problem have been made ready.

In conformity to (5.2) of XV, let us designate by $G_{0}(i j, h k)$ the probability of an event that the detection of interchange is possible within a triple alone which consists of a mother $A_{i j}$, a father $A_{h k}$ and an apparent child. Since now a mother-child combination is presented instead of a mating-child combination, the second quantity in (5.2) of XV is here to be replaced by the quantity

$$
\begin{equation*}
\Psi_{*}(i j, h k) \tag{6.1}
\end{equation*}
$$

representing the probability of an event that the detection becomes possible only by taking the mother-child combination into account. The probability of an event that such a triple is presented and the detection is possible against a pair consisting of a mother and an apparent child, is thus given by the sum

$$
\begin{equation*}
\mathfrak{G}(i j, h k)=G_{0}(i j, h k)+\Psi_{*}(i j, h k) . \tag{6.2}
\end{equation*}
$$

Concerning the first term of the second member in (6.2), we have discoursed fully in the preceding chapter. The second term $\Psi_{*}(i j, h k)$ possesses an analogous structure as $\Phi(i j, h k)$. In fact, according to the present situation, we have only to replace the $\varphi$ 's contained in the latter by the corresponding $\psi$ 's. We thus obtain the following expressions:

