10 [Vol. 29,

3. Zum Teilerkettensatz in kommutativen Ringen

Von Hazimu Sato

Pädagogische Fakultät, Híroshima Universität (Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1953)

In der vorliegenden Note verstehen wir unter dem Ring \Re stets einen allgemeinen kommutativen Ring. Das Ziel dieser Arbeit ist zu zeigen, dass wir, unter den folgenden Bedingungen, die Gültigkeit vom Teilerkettensatz in \Re herleiten können.

Bedingungen:

- (1) Ist eine Teilerkette von Halbprimidealen¹⁾ $\mathfrak{h}_1 \subseteq \mathfrak{h}_2 \subseteq \cdots$ in \mathfrak{R} gegeben, so bricht die Kette nach endlich vielen Gliedern ab.
- (2) Wenn ein Ideal a einen und nur einen minimalen Primidealteiler²⁾ $\mathfrak p$ (einschl. $\mathfrak R$) besitzt, so gilt der Teilerkettensatz zwischen a und $\mathfrak p$.

Die Notwendigkeit der Bedingungen ist klar. Im folgenden wollen wir zeigen, dass die Bedingungen hinreichend sind.

1. Erstens behaupten wir:

Gilt in R die Bedingung (1), so können wir jedes Halbprimideal h als einen kürzesten Durchschnitt von endlich vielen minimalen Primidealteilern von h darstellen.

Es sei h ein Halbprimideal. Benutzt man die Tatsache, dass der Idealquotient h: b auch ein Halbprimideal ist, wo b ein beliebiges Ideal ist, so können wir auf ganz dieselben Weisen, wie S. Mori in seinen Arbeiten³⁾ gezeigt hat, die Behauptung beweisen.

2. Wir gehen nun zum Beweise des Teilerkettensatzes über. Es sei

$$\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \mathfrak{a}_3 \subseteq \cdots$$

eine Teilerkette von Idealen \mathfrak{a}_i und \mathfrak{h}_i das zugehörige Halbprimideal von \mathfrak{a}_i $(i=1,2,\cdots)$. Dann ist offenbar $\mathfrak{h}_i \subseteq \mathfrak{h}_i \subseteq \cdots$, und wegen (1) muss diese Kette im Endlichen (etwa nach N_1 Schritten) abbrechen, nämlich $\mathfrak{h}_{N_1} = \mathfrak{h}_{N_1+1} = \cdots$. Zur Abkürzung setzen wir $\mathfrak{a} = \mathfrak{a}_{N_1}$, $\mathfrak{h} = \mathfrak{h}_{N_1}$

¹⁾ Ein Ideal $\mathfrak h$ heisst Halbprimideal, wenn es in dem Restklassenring $\mathfrak H/\mathfrak h$ kein nilpotentes Element gibt.

²⁾ Unter einem minimalen Primidealteiler eines Ideals a verstehen wir einen Primidealteiler, zwischen dem und a kein Primideal eingeschaltet werden kann.

³⁾ S. Mori: Über Ringe, in denen die grössten Primärkomponenten jedes Ideals eindeutig bestimmt sind, Jour. Sci. Hiroshima Univ., 1, 161 (1931).

^{—:} Über eindeutige Reduktion von Idealen in Ringen ohne Teilerkettensatz, ibid., 3, 299 (1933).

^{-:} Über Ringe, die den Durchschnittssatz gestatten, ibid., 2, 130 (1942).

⁴⁾ Die Gesamtheit der Elemente, die in bezug auf α nilpotent sind, heisst das zu α gehörige Halbprimideal.