2. On Homotopy Classification and Extension

By Minoru NAKAOKA

Department of Mathematics, Osaka City University (Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1953)

In the present note we give a homotopy classification theorem for mappings of an (n+k)-dimensional complex into a finite complex Y such that

(1) $\pi_i(Y)=0$ for $0 \le i < n$ and n < i < n+k, and the corresponding extension theorem, where $n \ge k+2$ and $k \le 6.$

§ 1. Let $X(\ni x_0)$ be an arcwise connected and simply connected space, and let $X^* = X \cup e^{n_1} \cup \cdots \cup e^{n_s}$, where the boundary $\dot{e}^{n_i}(\ni q_i)$ of each cell e^{n_i} is attached to X by a map $f_i: (\dot{e}^{n_i}, q_i) \to (X, x_0)$. We refer to such a space X^* as $\{X | e^{n_1}, \cdots, e^{n_s}; f_1, \cdots, f_s\}$. Suppose that $g_i: (E^r, \dot{E}^r, p_0) \to (e^{n_i}, \dot{e}^{n_i}, q_i)$ $(i=1, \cdots, t \le s)$ is a representative of the homotopy class $\{g_i\} \in \pi_r(e^{n_i}, \dot{e}^{n_i}, q_i)$, and that a condition $\sum_{i=1}^t \{f_i \circ (g_i | \dot{E}^r)\} = 0$ is satisfied in $\pi_{r-1}(X, x_0)$. Then we can construct a map of an r-sphere S^r in X^* as follows: Let \mathcal{E}^r_i $(i=1, 2, \cdots, t)$ be t disjoint r-cells in S^r which have a single point p in common, and let $\mathcal{E}^r = \bigcup_{i=1}^t \mathcal{E}^r_i, \dot{\mathcal{E}}^r = \bigcup_{i=1}^t \dot{\mathcal{E}}^r_i$. Choose an orientation of S^r , and orient each \mathcal{E}^r_i in agreement with S^r . If we map each \mathcal{E}^r_i to e^{n_i} by the map g_i , we get a map $g': (\mathcal{E}^r, \dot{\mathcal{E}}^r, p) \to (X^*, X, x_0)$ such that $g' | \dot{\mathcal{E}}^r$ is nullhomotopic in X. Map now $\overline{S^r - \mathcal{E}^r}$ in X by an arbitrary nullhomotopy of $g' | \dot{\mathcal{E}}^r$, then we obtain a map of S^r in X^* . This is the desired map and such a map is denoted by $\langle g_1, g_2, \cdots, g_t | X \rangle$.

As for the spherical-maps, we use the following notations: $i_r: S^r \to S^r \ (r \ge 1)$ is the identity map; $\eta_r: S^{r+1} \to S^r \ (r \ge 2), \ \nu_r: S^{r+3} \to S^r \ (r \ge 4)$ are the suspensions of the Hopf maps $\eta_2, \ \nu_4$ respectively. Let $\partial_n: \pi_{n+1}(e^{r+1}, \dot{e}^{r+1}) \approx \pi_n(S^r)$ be the homotopy boundary, then we refer to maps in the homotopy classes $\partial_r^{-1}\{i_r\}, \ \partial_{r+1}^{-1}\{\eta_r\}, \ \partial_{r+3}^{-1}\{\nu_r\}$ as $\bar{i}_{r+1}, \ \bar{\eta}_{r+1}, \ \bar{\nu}_{r+1}$ respectively.

§2. Using the homology theory of Abelian groups due to Eilenberg-MacLane³⁾ and the known results relative to the homotopy

¹⁾ Full details will appear in the Journal of the Institute of Polytechnics, Osaka City University. The first part of the details was already presented to the editor of the journal.

²⁾ A general theory of this problem was given by S. Eilenberg—S. MacLane (cf. Proc. Nat. Acad. Sci., U.S.A., IV).

³⁾ S. Eilenberg-S. MacLane: Cohomology theory of Abelian groups and homotopy theory II. Proc. Nat. Acad. Sci., U.S.A., **36**, No. 11 (1950); IV ibid., **38**, No. 4 (1952).