122. A Necessary Unitary Field Theory as a Non-Holonomic Parabolic Lie Geometry Realized in the Three-Dimensional Cartesian Space

By Tsurusaburo TAKASU

(Comm. by Z. SUETUNA, M.J.A., Dec. 14, 1953)

The geometry based upon is the author's non-holonomic parabolic Lie geometry $^{(0)}$, which is situated among other branches of geometry as follows: (Euclidean geometry): (Non-Euclidean geometry) = (parabolic Lie geometry): (Lie geometry) = (nonholonomic parabolic Lie geometry): (non-holonomic Lie geometry). Instead of the quadratic differential form:

(0.1) $ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = g_{\underline{\mu}\underline{\nu}}dx^{\mu}dx^{\nu} + g_{\underline{\mu}\underline{\nu}}dx^{\mu}dx^{\nu},$ we take the linear vector form

(0.2) $\gamma_{\mathfrak{s}}\omega^{\mathfrak{s}} = \gamma_{\mathfrak{l}}\omega^{\mathfrak{l}}, \ (\omega^{\mathfrak{l}} = \omega_{\mu}^{\mathfrak{l}}dx^{\mu}, \ \mathfrak{l} = 1, 2, 3, 4),$

such that

 $(0.3) dsds = \omega^5 \omega^5 = \omega^l \omega^l,$

where in Einstein's notation¹⁾ we have

 $(0.4) g_{\mu\nu} = \omega^l_{\mu}\omega^\nu_{\nu},$

(0.5)
$$g_{\mu\nu} = \gamma_4 \gamma_1 (\omega_\mu^4 \omega_\nu^1 - \omega_\nu^4 \omega_\mu^1) + \cdots + \gamma_2 \gamma_3 (\omega_\mu^2 \omega_\nu^3 - \omega_\mu^3 \omega_\nu^2) \cdots + ,$$

and

(0.6)
$$\gamma_1^2 = \gamma_2^2 = \gamma_3^2 = -\gamma_4^2 = \gamma_5^2 = 1$$
, $\gamma_4 = i\gamma_5$, $\gamma_2\gamma_3 + \gamma_3\gamma_2 = 0$, etc.,
 $\gamma_4\gamma_1 + \gamma_1\gamma_4 = 0$, etc., $\gamma_5\gamma_1 + \gamma_1\gamma_5 = 0$, etc.,

the $\gamma_1, \gamma_2, \gamma_3, \gamma_5$ being the Pauli's 4-4-matrices. Starting from (0.2) and pursuing necessities stepwise, the author will develop a unitary field theory.

1. Realization of the Non-Holonomic Parabolic Lie Geometry in the Cartesian Space. The said geometry will be realized in the three-dimensional Cartesian space provided with the Cartesian coordinates (ξ^{i}), (i=1, 2, 3), such that

(1.1)		$d\mathcal{E}$	$\omega = \omega$	ι.
()		-		•
(1.2)	$d\mathcal{E}^4$	-	$\omega^4 =$	dr

the r being the radius of the oriented sphere with center $P(\xi')$. We adopt a double use for ds:

a vector (0.2) with components	the common tangential segment
ω^{i} .	ds = idS of the oriented sphere
	(P, r) with its consecutive one.
The quantity $ds = idS$ is purely	imaginary, when

^{*)} The ciphers in the square brackets refer to the References attached to the end of this paper.