14. Two Remarks on Dimension Theory for Metric Spaces

By Jun-iti Nagata
Osaka City University and University of Washington
(Comm. by K. Kunugi, m.J.A., Jan. 12, 1960)

The purpose of this brief note is to make slight remarks on extensions of the well-known theorems in dimension theory for metric spaces.

First, we can extend Eilenberg-Otto's theorem to the countable dimensional case as follows.

Proposition 1. A metric space R is countable-dimensional, i.e. it is represented as a countable sum of 0-dimensional spaces if and only if for every collections $\left\{U_{i} \mid i=1,2, \cdots\right\}$ of open sets and $\left\{F_{i} \mid i=1\right.$, $2, \cdots\}$ of closed sets satisfying $F_{i} \subset U_{i}, i=1,2, \cdots$, there exists a collection $\mathfrak{F}=\left\{V_{i} \mid i=1,2, \cdots\right\}$ of open sets such that

$$
\begin{equation*}
F_{i} \subset V_{i} \subset U_{i}, \quad i=1,2, \cdots \tag{1}
\end{equation*}
$$

(2) $\{B(V) \mid V \in \mathfrak{B}\}$ is point-finite, i.e. its order is finite at every point p of R, where $B(V)$ denotes the boundary of V.

Proof. Since the "only if" part is a direct consequence of [1, Theorem 2], we show only the "if" part. By R. H. Bing's theorem [2] we can find a σ-discrete basis $\mathfrak{U}=\underbrace{\infty}_{i=1} \mathfrak{U}_{i}$ for the metric space R. Let $\mathfrak{U}_{i}=\left\{U_{r} \mid \gamma \in \Gamma_{i}\right\}, U_{r}=\underbrace{\infty}_{j=1} F_{r j}$ for closed sets $F_{r j}$. Furthermore, let $U_{i}=$
 we can find a collection $\mathfrak{B}=\left\{V_{i j} \mid i, j=1,2, \cdots\right\}$ of open sets such that $F_{i j} \subset V_{i j} \subset U_{i},\{B(V) \mid V \in \mathfrak{B}\}$ is point-finite. Letting $V_{i j \frown} U_{r}=W_{r j}, \gamma \in \Gamma_{i}$ we get a locally finite collection $\mathfrak{B}_{i j}=\left\{W_{r j} \mid \gamma \in \Gamma_{i}\right\}$. Now $\mathfrak{W}=\smile_{\left\{\mathfrak{B}_{i j} \mid\right.}$ $i, j=1,2, \cdots\}$ is a σ-locally finite basis of R such that $\{B(W) \mid W \in \mathfrak{B}\}$ is point-finite. Hence by [1, Theorem 1], we can conclude that R is countable-dimensional.

Next, we can give an extension to the sum-theorem as follows.
Proposition 2. Let $\left\{F_{\alpha} \mid \alpha<\tau\right\}$ be a covering of a metric space R consisting of subsets F_{α} with $\operatorname{dim} F_{\alpha} \leqq n, \alpha<\tau$ such that $\left\{F_{\alpha} \mid \alpha<\beta\right\}$ is closed for every $\beta<\tau$. Then $\operatorname{dim} R \leqq n$.

Proof. E. Michael gave a simple proof of this theorem by use of the sum-theorem for countably many closed sets and locally finite collection of closed sets which is due to K. Morita [3] and partly to M. Katětov [4] and the others. Now, however, let us give a sketch of a direct proof. We assume $F_{\alpha \cap} F_{\beta}=\phi$ for every α, β with $\alpha \neq \beta$ without loss of generality.

In the case of $n=0$, let G and H be disjoint closed sets of R. Then we can define, by induction with respect to α,

