224. On Imbeddings and Colorings of Graphs. II

By Gikō Ikegami
(Comm. by Kinjirô Kunugi, m.J.A., Dec. 12, 1967)

§ 1. Introduction. In this paper we use the same definitions and notations as in the part I. The following theorem is proved in this paper.

Theorem (1.1). If there exists an m-imbeddable and n-chromatic graph, there exists a graph of which genus is m^{\prime} and the chromatic number is n^{\prime}, for any m^{\prime} and n^{\prime} satisfying $m^{\prime} \geqq m$ and $2 \leqq n^{\prime} \leqq n$.

In § 2 we prove theorem (2.5), which is more general than theorem (1.1), by using part I. But theorem (1.1) can be proved directly by the idea which professor Y. Saito told me. An outline of this idea is shown at the end of this paper.

Lemma (2.1). Let the chromatic number of H be larger than 2. If there is an imbedding of H into M, there is a graph G such that (i) H and G have the same chromatic number, (ii) G has no k-circuit for $k<3$, and (iii) there is a 2-cell imbedding $G(M)$.

Proof. Let $H(M)$ be the given imbedding, and let α be any component of $M-H(M)$. If H is n-chromatic, there is a colorclassification $H^{0}=\gamma_{1} \cup \cdots \cup \gamma_{n}$.

We can take arcs a_{1}, \cdots, a_{p} in α joining the vertices in $\operatorname{Bd} \alpha$ and not intersecting each other such that any component of $\alpha-a_{1} \cup \cdots \cup a_{p}$ is an open 2-cell. Let A_{i}, B_{i} be the edges of a_{i}. Here we permit happening $A_{i}=B_{i}$. Let C_{i} be the center of a_{i}. Then, we construct as follows an n-chromatic graph H_{α} imbedding $H_{\alpha}(M)$ and color-classes $\gamma_{\alpha, 1}, \cdots, \gamma_{\alpha, n}$:
(i) $H_{\alpha}^{0}=H^{0} \cup\left\{C_{1}, \cdots, C_{p}\right\}$,
$H_{\alpha}^{1}=H^{1} \cup\left\{\left(A_{i}, c_{i}\right),\left(B_{i}, C_{i}\right) \mid i=1, \cdots, p\right\}$.
(ii) $\quad H_{\alpha}(M) \mid H=H(M), H(M)\left(C_{i}\right)=C_{i}$ and $H_{\alpha}(M) \mid\left(A_{i}, C_{i}\right) \cup\left(B_{i}, C_{i}\right)$ is onto a_{i}.
(iii) As the chromatic number of $H \geqq 3$, for a_{i} we can fix γ_{j} such that $\gamma_{j} \neq \gamma\left(A_{i}\right), \gamma\left(B_{i}\right)$. If we note this γ_{j} by $\gamma\left(a_{i}\right)$, we have the color-classes of H_{α} as follows:

$$
\gamma_{\alpha, j}=\gamma_{j} \cup\left\{C_{i} \mid \gamma\left(\alpha_{i}\right)=\gamma_{j}\right\},(j=1, \cdots, n) .
$$

We repeat the same modification for all non cellular components of $M-H(M)$, and finally we obtain $H_{1}, H_{1}(M)$ and color-classification $H^{0}=\gamma_{1,1} \cup \cdots \cup \gamma_{1, n} . \quad H_{1}$ satisfies the conditions (i) and (iii) which G is to satisfy.

Next, let a_{1}, \cdots, a_{q} be all the 1-circuits contained in H_{1} and let A_{i} be the vertex on a_{i}, namely $a_{i}=\left(A_{i}, A_{i}\right) \in H_{1}^{1}$. To take away

