193. Unitary Representations of SL(n, C)

By Masao TSUCHIKAWA Mie University

(Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1968)

§1. Let G be the group SL(n, C) and $\chi = \{\lambda_1, \mu_1; \dots; \lambda_{n-1}, \mu_{n-1}\}$ $(\lambda_i \text{ and } \mu_i \text{ are complex numbers and } \lambda_i - \mu_i \text{ are integers})$ be a character of the diagonal subgroup $D: \chi(\delta) = (\delta_2 \delta_3 \cdots \delta_n)^{(\lambda_1, \mu_1)} (\delta_3 \cdots \delta_n)^{(\lambda_2, \mu_2)} \cdots \cdots \delta_n^{(\lambda_{n-1}, \mu_{n-1})}$ (where $z^{(\lambda, \mu)} = z^{\lambda} \bar{z}^{\mu}$), and W be the Weyl group G whose elements can be identified with $s = \begin{pmatrix} 1 \cdots n \\ j_1 \cdots j_n \end{pmatrix}$ of the permutation group \mathfrak{S}_n generated by $s_i = (i \ i+1)$. We divide the set of characters into two classes : regular and singular. A regular character χ is such that any one of pairs (λ'_i, μ'_i) contained in $\chi' = \chi^s$ for all $s \in W$ is not a pair of integers of the same signature, and a singular character χ to be of type (D), if some pair in χ is (-1, -1) and any other pair (λ'_i, μ'_i) in $\chi' = \chi^s$ for s, such that s leaves the totality of pairs (-1, -1) in χ stable, is not a pair of integers of the same signature.

In this paper we shall discuss the unitarity of the elementary representation $R(\chi) = \{T^{\chi}, \mathcal{D}_{\chi}\}$ of G for a regular character χ and a singular character χ of type (D). We shall remark that the unitary representation of the degenerate supplementary series recently described by E. M. Stein [1] is one of the representations $R(\chi)$ of the latter case.

§2. Generalizing the method in [2] and [3], we consider the invariant bilinear form between two representations $R(\chi)$ and $R(\chi')$. In this point of view the integral kernel of the invariant bilinear form is analytically continued rather than the representation itself.

Let $\langle \varphi, \psi \rangle = B(\varphi, \overline{\psi})$ for φ and $\psi \in \mathcal{D}_{\chi}$, where $B(\cdot, \cdot)$ is an invariant bilinear form on $\mathcal{D}_{\chi} \times \mathcal{D}_{\overline{\chi}}$, and then $\langle \cdot, \cdot \rangle$ is an Hermitian form on \mathcal{D}_{χ} . If $\langle \cdot, \cdot \rangle$ exists and is positive definite, the representation $R(\chi)$ is unitary with respect to this scalar product. In order that the invariant Hermitian form on \mathcal{D}_{χ} exists, it is necessary and sufficient that χ satisfied the condition that $\chi \overline{\chi}^s = 1$ for some $s \in W$.

§ 3. Let χ be a regular character satisfying $\chi \overline{\chi}^s = 1$ for some $s \in W$, then we have a non-degenerate Hermitian form on \mathcal{D}_{χ} . Now if we set $\chi' = \chi^{s_i}$, then the representations $R(\chi)$ and $R(\chi')$ are equivalent by means of the intertwinning operator A_i :

$$A_{i}\varphi(z) = \gamma(\lambda_{i}, \mu_{i}) \int z_{i+1}^{\prime(\lambda_{i}-1,\mu_{i}-1)} \varphi(z_{i+1}^{\prime} z) dz_{i+1}^{\prime} z.$$