193. Unitary Representations of $\operatorname{SL}(n, C)$

By Masao Tsuchikawa
Mie University
(Comm. by Kinjirô Kunugi, M. J. A., Oct. 12, 1968)

§1. Let G be the group $S L(n, C)$ and $\chi=\left\{\lambda_{1}, \mu_{1} ; \cdots ; \lambda_{n-1}, \mu_{n-1}\right\}$ (λ_{i} and μ_{i} are complex numbers and $\lambda_{i}-\mu_{i}$ are integers) be a character of the diagonal subgroup $D: \chi(\delta)=\left(\delta_{2} \delta_{3} \cdots \delta_{n}\right)^{\left(\lambda_{1}, \mu_{1}\right)}\left(\delta_{3} \cdots \delta_{n}\right)^{\left(\alpha_{2}, \mu_{2}\right)} \cdots$ $\cdots \delta_{n}^{\left(\lambda_{n-1}, \mu_{n-1}\right)}$ (where $\left.z^{(\lambda, \mu)}=z^{\lambda} \bar{z}^{\mu}\right)$, and W be the Weyl group G whose elements can be identified with $s=\binom{1 \cdots n}{j_{1} \cdots j_{n}}$ of the permutation group \mathbb{S}_{n} generated by $s_{i}=(i i+1)$. We divide the set of characters into two classes : regular and singular. A regular character χ is such that any one of pairs ($\lambda_{i}^{\prime}, \mu_{i}^{\prime}$) contained in $\chi^{\prime}=\chi^{s}$ for all $s \in W$ is not a pair of integers of the same signature, and a singular character χ is otherwise. Furthermore we call the singular character χ to be of type (D), if some pair in χ is $(-1,-1)$ and any other pair ($\left.\lambda_{i}^{\prime}, \mu_{i}^{\prime}\right)$ in $\chi^{\prime}=\chi^{s}$ for s, such that s leaves the totality of pairs $(-1,-1)$ in χ stable, is not a pair of integers of the same signature.

In this paper we shall discuss the unitarity of the elementary representation $R(\chi)=\left\{T^{\mathrm{x}}, \mathscr{D}_{\chi}\right\}$ of G for a regular character χ and a singular character χ of type (D). We shall remark that the unitary representation of the degenerate supplementary series recently described by E. M. Stein [1] is one of the representations $R(\chi)$ of the latter case.
§2. Generalizing the method in [2] and [3], we consider the invariant bilinear form between two representations $R(\chi)$ and $R\left(\chi^{\prime}\right)$. In this point of view the integral kernel of the invariant bilinear form is analytically continued rather than the representation itself.

Let $\langle\varphi, \psi\rangle=B(\varphi, \bar{\psi})$ for φ and $\psi \in \mathscr{D}_{x}$, where $B(\cdot, \cdot)$ is an invariant bilinear form on $\mathscr{D}_{x} \times \mathscr{D}_{\bar{\chi}}$, and then $\langle\cdot, \cdot\rangle$ is an Hermitian form on \mathscr{D}_{χ}. If $\langle\cdot, \cdot\rangle$ exists and is positive definite, the representation $R(\chi)$ is unitary with respect to this scalar product. In order that the invariant Hermitian form on \mathscr{D}_{χ} exists, it is necessary and sufficient that χ satisfied the condition that $\chi \bar{\chi}^{s}=1$ for some $s \in W$.
§3. Let χ be a regular character satisfying $\chi \bar{\chi}^{s}=1$ for some $s \in W$, then we have a non-degenerate Hermitian form on \mathscr{D}_{x}. Now if we set $\chi^{\prime}=\chi^{s i}$, then the representations $R(\chi)$ and $R\left(\chi^{\prime}\right)$ are equivalent by means of the intertwinning operator A_{i} :

$$
A_{i} \varphi(z)=\gamma\left(\lambda_{i}, \mu_{i}\right) \int z_{i+1}^{\prime\left(\lambda_{i}-1, \mu_{i-1}\right.} \varphi\left(z_{i+1}^{\prime} z\right) d z_{i+1}^{\prime} .
$$

