217. A Class of Markov Processes with Interactions. II

By Tadashi Ueno
Department of Mathematics, Faculty of General Education, University of Tokyo

(Comm. by Zyoiti Suetuma, m. J. A., Dec. 12, 1969)

Here, we look at the branches which describe the interactions between particles of the model in [4]. This leads to finer proofs of Chapman-Kolmogorov equation and the backward equation. A consistency condition holds for probabilities of events which are determined by bundles of these branches.

1. To consider the simplest model with binary interactions, let $q(t, y) \equiv q_{1}(t, y)$ and $q_{0} \equiv q_{2} \equiv q_{3} \equiv \cdots \equiv 0$, and write $\pi\left(y^{\prime} \mid t, y, E\right)$ for $\pi_{1}\left(y_{1} \mid t, y, E\right)$ in 1 of [4]. ${ }^{1)}$ Then, the forward and the backward equations are

$$
P^{(f)}(s, x, t, E)=P_{0}(s, x, t, E)+\int_{s}^{t} d \tau \int_{R^{2}} P^{(f)}(s, x, \tau, d y)
$$

$$
\begin{equation*}
\times P_{s, \tau}^{(f)}\left(d y^{\prime}\right) q(\tau, y) \int_{R} \pi\left(y^{\prime} \mid \tau, y, d z\right) P_{0}(\tau, z, t, E) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& P^{\left(P_{s o s}^{(f)}\right)}(s, x, t, E)=P_{0}(s, x, t, E)+\int_{s}^{t} d \tau \int_{R^{2}} P_{0}(s, x, \tau, d y) \tag{2}\\
& \quad \times P_{s_{0} \tau}^{(f)}\left(d y^{\prime}\right) q(\tau, y) \int_{R} \pi\left(y^{\prime} \mid \tau, y, d z\right) P^{\left(P_{s_{0 \tau}}^{(f)}\right)(\tau, z, t, E),}
\end{align*}
$$

where $P_{s, \tau}^{(f)}(E) \doteq \int_{R} f(d x) P^{(f)}(s, x, \tau, E), \quad s_{0} \leq s \leq t$.
Let T be the set of all branches which grow downward with binary branching points and the trivial branch (or a pole) b_{0}. For b_{1} and b_{2} in $T, b=\left(b_{1}, b_{2}\right)$ is the branch which has b_{1} and b_{2} on the left and the right side of the highest branching point. Length $l(b)$ and the number of the end points \#(b) are defined by

$$
\begin{aligned}
& l\left(b_{0}\right)=0, l\left(\left(b_{1}, b_{2}\right)\right)=1+\max \left(l\left(b_{1}\right), l\left(b_{2}\right)\right), \\
& \#\left(b_{0}\right)=1, \#\left(\left(b_{1}, b_{2}\right)\right)=\#\left(b_{1}\right)+\#\left(b_{2}\right) .
\end{aligned}
$$

When \#(b) $=n$, let $b\left(b_{1}, \cdots, b_{n}\right)$ be the branch b with branches b_{1}, \cdots, b_{n} connected at the end points, with b_{k} at the k-th end point from the left. We write $b \geq b^{\prime}$ when $b=b^{\prime}\left(b_{1}, \cdots, b_{n}\right)$. Since the branches b_{1}, \cdots, b_{n} are determined

1) This is for the simplicity of descriptions. Results in this paper can be extended to the models in [4].
