109. A Non-Commutative Integration Theory for a Semi-Finite AW*-algebra and a Problem of Feldman

By Kazuyuki Saitô
Department of Mathematics, Tôhoku University
(Comm. by Kinjirô Kunugi, M. J. A., May 12, 1970)

We shall extend Feldman's result on "Embedding of $A W^{*}$-algebras" to semi-finite $A W^{*}$-algebras, that is, we shall show that a semifinite $A W^{*}$-algebra with a separating set of states which are completely additive on projections (c.a. states) has a faithful representation as a semi-finite von Neumann algebra. Full proofs will appear elsewhere.

Let M be a semi-finite $A W^{*}$-algebra with a separating set \mathbb{S} of c.a. states. By a c.a. state ϕ on M we mean a state on M such that for any orthogonal family of projections $\left\{e_{i}\right\}$ in M with $e=\sum_{i} e_{i} \phi(e)$ $=\sum_{i} \phi\left(e_{i}\right)$. Let \mathcal{C} be the algebra of "measurable operators" affiliated with M [6]. Denote the set of all positive elements, projections, partial isometries and unitary elements in M by $M^{+}, M_{p}, M_{p i}$ and M_{u}, respectively.

Let $\widetilde{\mathbb{S}}$ be the set of finite linear combinations of elements in $\left\{a^{*} \omega a\right.$, $\omega \varepsilon \subseteq, a \varepsilon M\}$, where $\left(a^{*} \omega a\right)(x)=\omega\left(a x a^{*}\right)$ for all $x \varepsilon M$. For any positive number ε and any positive integer n, put $V_{\varepsilon, n}\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)(0)$ $=\left\{a ;\left|\omega_{i}(a)\right|<\varepsilon, i=1,2, \cdots n, \omega_{1}, w_{2}, \cdots, \omega_{n} \varepsilon \widetilde{\mathbb{S}}\right\}$ and we define the $\sigma(\mathbb{S})-$ topology of M by assigning sets of the form $V_{\varepsilon, n}\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)(0)$ to be its neighborhood system of 0 . Since $\widetilde{\Im}$ is a separating set of continuous linear functionals on M, this topology is the separated locally convex topology defined by the family of semi-norms $q_{\omega}(x)=|\omega(x)|, \omega \varepsilon \widetilde{\mathbb{S}}$. Then we have, by [3, Lemma 3],

Lemma 1. Let $\left\{e_{\alpha}\right\} \alpha \varepsilon A$ be an orthogonal set of projections in M such that $e=\operatorname{Sup}\left[\sum\left\{e_{\alpha}, \alpha \varepsilon I\right\}, \mathrm{A} \supset I \varepsilon F(A)\right.$ where $F(A)$ is the family of all finite subsets of A], then $\sum\left\{e_{\alpha}, \alpha \in I\right\} \rightarrow e(I \in F(A))$ in the $\sigma(\mathbb{S})-$ topology.

Lemma 2. Any abelian AW*-subalgebra, especially, the center Z of M is a W^{*}-algebra ([7]) and the $\sigma(\mathbb{S})$-topology restricted to this subalgebra is equivalent to the σ-topology on bounded spheres.

Let \boldsymbol{Z} be the set of all $[0,+\infty]$-valued continuous functions on the spectrum of Z [1], then we have

Theorem 1. There is an operation Φ from M^{+}to Z having the following properties:
(i) $\Phi\left(h_{1}+h_{2}\right)=\Phi\left(h_{1}\right)+\Phi\left(h_{2}\right) h_{1}, h_{2} \varepsilon M^{+}$;
(ii) $\Phi(\lambda h)=\lambda \Phi(h)$ if λ is a positive number and $h \varepsilon M^{+}$;

