173. On a Conjecture of K. S. Williams

By Saburô UCHIYAMA

Department of Mathematics, Shinshû University, Matsumoto (Comm. by Kinjirô Kunugi, M. J. A., Sept. 12, 1970)

1. Let p be a rational prime and n a positive integer ≥ 2 . We denote by $a_n(p)$ the least positive integral value of a which makes the polynomial $x^n + x + a$ irreducible (mod p). In a recent paper [3] K. S. Williams conjectured that for all $n \geq 2$ one has

(1)
$$\lim\inf a_n(p)=1,$$

and showed (among others) that (1) is true for n=2 and 3. In the present note we shall prove that (1) is true for n=4, 6, 9, 10 and for all primes $n\equiv 1\pmod 3$. However, it is immediately clear that (1) is not true for some (in fact, infinitely many) values of n. Indeed, the polynomial x^n+x+1 is irreducible in $Z[x]^{*}$ if and only if n=2 or $n\not\equiv 2\pmod 3$, and for $n\equiv 2\pmod 3$ x^n+x+1 has the obvious factor x^2+x+1 (cf. [2]). Thus, we can show that for n=5

$$\lim \inf_{a_b(p)=3} a_b(p) = 3$$

and for n=8

(3)
$$\liminf a_8(p) = 2.$$

2. Our foundation is on the following important theorem due to F. G. Frobenius [1].

Theorem. Let f(x) be a square-free polynomial (i.e. a polynomial with non-zero discriminant) of degree $n \ge 1$ in Z[x], and let d_1, \dots, d_r $(r \ge 1)$ be positive integers with $d_1 + \dots + d_r = n$. Then, if the Galois group of f(x), as a permutation group on n letters, contains a permutation which is decomposed as the product of r cycles of length d_1, \dots, d_r , there are infinitely many primes p such that we have

(4)
$$f(x) \equiv f_1(x) \cdots f_r(x) \pmod{p}$$
, where $f_1(x), \cdots, f_r(x)$ are polynomials of $Z[x]$, each irreducible (mod p), of degree d_1, \cdots, d_r , respectively.

In fact, it is proved in [1] that the Dirichlet density of prime numbers p for which (4) holds equals the number of permutations in the Galois group of f(x) that have r cycles of length d_1, \dots, d_r , divided by the order of the group.

By virtue of this theorem, a simple and well-known argument on the reduction (mod p) of the Galois group of f(x) will show that the

^{*)} We denote by Z, as usual, the ring of rational integers.