205. On Potent Rings. III

By Hidetoshi MARUBAYASHI College of General Education, Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1970)

In [5], [6], we have mainly investigated potent irreducible rings. The purpose of this paper is to prove that a right locally uniform potent ring with zero right singular ideal is an essential irredundant subdirect sum *PI*-rings and conversely. A number of concepts and results are needed from [5] and [6].

By the same argument as in Theorem 2.2 of [2], we obtain the following

Proposition 1. Let R be a right locally uniform ring with $Z_r(R) = 0$, let I be a right ideal of R and let I* be a unique maximal essential extension of I in R. Then $I^* = \{a \in R \mid aE \subseteq I \text{ for some } E \subset 'R\}$.

Let R be a right locally uniform ring with $Z_r(R)=0$ and let \hat{R} be the maximal right quotient ring of R. Then the mappings

 $A{
ightarrow} E_R(A),\ A\in L^*_r(R)\ ;\ \hat{A}{
ightarrow} \hat{A}\cap R,\ \hat{A}\in L^*_r(\hat{R})$

are mutually inverse isomorphisms between $L_r^*(R)$ and $L_r^*(\hat{R})$, where $E_R(A)$ is a right *R*-injective hull of *A* (see [1]). Let *A* be an element of $L_r^*(R)$. Then we denote by \hat{A} the element of $L_r^*(\hat{R})$ which corresponds to *A*. Clearly \hat{A} is a right *R*-injective hull of *A* and is right \hat{R} -injective. Let *A* and *B* be uniform right ideals of *R*. As in [5], *A* and *B* are similar (in symbol; $A \sim B$) iff *A* and *B* contain mutually isomorphic nonzero right ideals A' and B', respectively. The set of all uniform right ideals of *R* can be classified by the equivalence relation $\sim \cdot \{A_i\}$ will denote the class containing the uniform right ideal A_i . We now set $R_i = (\sum_{A \in \{A_i\}} A)^*$. Then we obtain

Proposition 2. Let R be a right locally uniform ring with $Z_r(R) = 0$. Then the following properties hold:

- (1) $\sum_{A \in \{A_i\}} A$ is a two-sided ideal.
- (2) R_i is an ideal of R for each i.
- (3) If B is a uniform right ideal of R and if $B \subseteq R_i$, then $B \sim A_i$.
- (4) $\sum_i R_i$ is a direct sum.

Proof. Let A be a uniform right ideal and let x be an element of R. Then xA=0 or $xA\cong A$ and hence (1) follows immediately.

- (2) follows immediately from Proposition 1 and (1).
- (3) is obtained by the same argument as in Lemma 5.5 of [3].

(4) We can prove that \hat{R}_i is an \hat{R} -injective hull of the sum of all minimal right ideals of \hat{R} which are isomorphic to \hat{A}_i . Hence the