204. On Potent Rings. II

By Hidetoshi MARUBAYASHI College of General Education, Osaka University (Comm. by Kenjiro Shoda, M. J. A., Oct. 12, 1970)

In [7], we defined residue-finite CPI-rings which are s-complemented with respect to L_{r2}^* . In this paper we shall give characterizations of such rings. Let R be a residue-finite CPI-ring and let \hat{R} be the maximal right quotient ring of R. We shall give also a necessary and sufficient condition that \hat{R} is a left quotient ring of R. This is a generalization of Faith's result [1] on prime rings. Terminology and notation will be taken from [6] and [7].

1. Triangular-block matrix rings with infinite dimension.

We shall give examples of residue-finite *CPI*-rings which are scomplemented with respect to $L_{r^2}^*$. Let F be a division ring and let ω be a countable ordinal number. We denote by $(F)_{\omega}$ the ring of all column-finite $\omega \times \omega$ matrices over F. Let F_{ij} be additive subgroups of F such that

(1.1) $F_{ij}F_{jk} \subseteq F_{ik}$ $(i, j, k=1, 2, \dots).$ Let

(1.2) $S = \{a \in (F)_{\omega} | a = (a_{ij}), a_{ij} \in F_{ij}\}.$

Clearly S is the subring of $(F)_{\omega}$. The ring S will be called a T-ring (triangular-block matrix ring) with type (A) in $(F)_{\omega}$ iff there exist integers $0=d_0 < d_1 < \cdots < d_n < \cdots$ such that

(1.3) $F_{ij} \neq 0$ iff $i > d_p$ and $d_p < j \leq d_{p+1}$ $(p=0, 1, 2, \dots)$.

The ring S will be called a T-ring with type (B) in $(F)_{\omega}$ iff there exist integers $0 = d_0 < d_1 < \cdots < d_p$ such that

(1.4) $F_{ij} \neq 0 \iff$ (i) if $j \leq d_p$, then $i > d_k$ and $d_{k-1} < j \leq d_k$ for some $k(1 \leq k \leq p)$, (ii) if $j > d_p$, then $i > d_p$.

In both cases, associated with S is the full T-ring

(1.5) $M = \{a \in (F)_{\omega} | a = (a_{ij}), a_{ij} \in F'_{ij}\}, \text{ where } F'_{ij} = F \text{ whenever } F_{ij} \neq 0 \text{ and } F'_{ij} = 0 \text{ otherwise.}$

Following R. E. Johnson, we shall call M the full cover of S. Let A and B be subsets of a division ring F. The set $\{ab^{-1} | a \in A, 0 \neq b \in B\}$ will be denoted by AB^{-1} . A ring Q is called a right quotient ring of a subring R if for each $a, 0 \neq b \in Q$, there exist $r \in R$ and $n \in Z$ such that $ar + na \in R$ and $br + nb \neq 0$, where Z is the ring of integers; in symbols: $R \leq Q$. A left quotient ring is defined similarly. If Q is a left and right quotient ring of a ring R, then we write $R \leq _i Q$. If R has the zero right singular ideal, then Q is a right quotient ring of R if and only if Q is