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Let K=GF(q) be a Galois field with ¢ elements, ¢=p°,p prime,
s>1. Let K* denote the Cartesian product of n copies of K. The
following definition is basic for our further investigation:

Definition 1. A polynomial f ¢ Klx,, ---,x,] is called a permu-
tation polynomial (in n variables over K) if the equation f(x,, ---,x,)
=a has ¢* ' solutions in K* for each a c K.

For n=1, this coincides with the well-known notion of a permu-
tation polynomial in one variable ([3], ch. 5; [1]; [6]). We shall charac-
terize the permutation polynomials of degree at most two such that
they can be determined effectively. For rather obvious reasons, the
cases p#2 and p=2 have to be distinguished.

The prime field GF(p) of K can be identified with the residue class
field Z/(p). We shall freely use this identification in the sequel. In
particular, the trace tr (a) of an element a ¢ K relative to the extension
K/GF(p) can be viewed as an integer modulo p. Throughout this
paper, & will always stand for a fixed primitive p-th root of unity. The
following criterion is crucial:

Theorem 1. f e Klx,, ---,2,] is a permutation polynomial if and
only if

g @z, esan)) = () for all non-zero b ¢ K.

(@1,++,an) EX™
Proof. We have
gues@ e = 3" N(@)€=¢»  forall be K
(a1,**,an)EKN a€EK

where N(a) is the number of solutions in K* of f(a,---,a,)=a. If f
is a permutation polynomial, then N(a)=q"* for all a ¢ K and so for
all non-zero be K:

gtr(bf(al,m,a,n)) — qn—l Z étr(ba) — qn—l Z St.x'(c) =O.
(@1,++,ap)EKT a€EK cEK

Conversely, suppose that the condition of the theorem is satisfied.
Then for allac K:

N(a):i Z StrEb(f(ax,"-,am—a)]
Q (a1,+++,ap)EK™ bEK
:L Z Etr(bf(al,~~',an)>$tr(—ab)
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