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1. Introduction and summary. The present paper is concerned
with the so-called Stokes operator described below. Our objective is
to prove a theorem concerning domains of fractional powers of the
Stokes operator. This theorem has some applications to the Navier-
Stokes equation [4], as is expected from important roles played by the
fractional powers of the Stokes operator in recent works on the Navier-
Stokes equation. For instance, see Sobolevskii [11, 12], Kato-Fujita
[7]1, Fujita-Kato [3], and Masuda [10]. Moreover, we hope that the
theorem is of some interests also from the view point of theory of frac-
tional powers of operators and theory of interpolation of spaces.

Let 2 be a bounded domain in R™ with smooth boundary 02. By
L we denote L,(2) of real m-vector functions defined in 2. C5, is the
set of all vector functions ¢ e C~(2) with div¢=0 and supp ¢C Q.
We put

H,=the closure of Cg, in L,(2),

H’,=the closure of Cp, in Wi(Q).
Here, Wi(Q) means the Sobolev space of order I. The orthogonal pro-
jection from L onto H, is denoted by P. The operator A,= — P4 with
domain Cy, is positive and symmetric in the Hilbert space H,. The
Friedrichs extension A of A, is called the Stokes operator in 2. A is
positive and self-adjoint. It should be noted that Au=Pf (feL)
implies that

u—Vp=-—f in 2,

a.n divu=0 in 2,

o =0
with some scalar function p. Actually, it is known [2, 8] that
(1.2) DA)=WYNH;,

where 9(A) is the domain of the operator A. On the other hand, we
put B=—4 with
1.3) DB)=WiNH,
where H! is the set of all e Wi(Q) satisfying u|,,=0. Obviously, B
is a positive self-adjoint operator in L.

Our theorem now reads:

Theorem 1.1, Let A and B be as above. Then for any a in
0<a <1, we have



