254. Ergodic Properties of Piecewise Linear Transformations

By Iekata Shiokawa
Department of Mathematics, Tokyo Metropolitan University
(Comm. by Kinjirô Kunugi, m. J. A., Dec. 12, 1970)

1. Introduction. After the work of Rényi [1], ergodic properties of β-expansions of real numbers have been studied in [2]-[4]. In this paper we generalize these results for a class of expansions, called piecewise linear expansions, which includes β-expansions as special cases.

Let $\bar{\beta}=\left(\beta_{0}, \beta_{1}, \cdots, \beta_{N}\right), N \geqq 1$, be a $(N+1)$-tuple of positive number such that $0<\theta \equiv \beta_{N}\left(1-\sum_{k=0}^{N-1}\left(1 / \beta_{R}\right)\right) \leqq 1$.

We denote the set of all $(N+1)$-tuples by $V(N+1)$. For each $\bar{\beta} \in V(N+1)$, we define a corresponding function $f(t)$ by

$$
f(t)= \begin{cases}\frac{t}{\beta_{0}}, & 0 \leqq t \leqq 1 \\ f(K)+\frac{t-k}{\beta_{k}}, & k<t \leqq k+1,(k=1,2, \cdots, N+1) \\ 1, & N<t \leqq N+\theta,(k=N) \\ & t>N+\theta\end{cases}
$$

The function $f(t)$ satisfies the Rényi's conditions [1]. Thus every real number x has the f-expansion

$$
x=a_{0}(x)+f\left(a_{1}(x)+f\left(a_{2}(x)+\cdots\right) \cdots\right),
$$

where the digits $a_{n}(x), n=0,1, \cdots$, and the remainders

$$
T^{n} x=f\left(a_{n}(x)+f\left(a_{n+1}(x)+\cdots\right) \cdots\right), \quad n=0,1, \cdots,
$$

are defined by the following recursive relations: $a_{0}(x)=[x], T^{0} x=\{x\}$, $T^{n+1} x=\left\{f^{-1}\left(T^{n} x\right)\right\}, a_{n+1}(x)=\left[f^{-1}\left(T^{n} x\right)\right], n=0,1, \cdots$, where $[z]$ denotes the integral part and $\{z\}$ the fractional part of the real number z and f^{-1} is the inverse function of f.

This f-expansion is called a piecewise linear expansion induced by $\bar{\beta}$ or simply $\bar{\beta}$-expansion, and the transformation $T x=\left\{f^{-1}(x)\right\}, 0 \leqq x$ <1, is called a piecewise linear transformation induced by $\bar{\beta}$. By definition, T is a many to one transformation of $[0,1)$ onto itself and nonsingular with respect to the Lebesgue measure m.

For the number 1, we define, especially, $a_{0}(1)=0$ and $T^{0} 1=1$. Then $\bar{\beta} \in V(N+1)$ is said to be periodic if the $\bar{\beta}$-expansion of 1 has a recurrent tail, and rational if the $\bar{\beta}$-expansion of 1 has a zero tail. The order of a rational $\bar{\beta}$ is the minimum integer r such that $a_{n}(1)=0$ for all $n>r+1$.
2. Invariant measures. Lemma 1. Let T be a piecewise linear transformation induced by $\bar{\beta} \in V(N+1)$ and μ a finite measure equivalent to the Lebesgue measure m. Then μ is T-invariant if and only if

