252. On Wiener Functions of Order m

By Hidematu TANAKA
Mathematical Institute, Nagoya University
(Comm. by Kinjirô Kunugi, M. J. A., Dec. 12, 1970)

1. Let Ω be an open subset of the n-dimensional Euclidian space $R^n(n\geq 2)$ and f_i be a continuous function on the boundary of $\Omega(1\leq i\leq m)$. Riquier's problem for a polyharmonic equation $\Delta^m u=0$ on Ω is to find a function u such that $\Delta^m u=0$ in Ω and $(-\Delta)^{i-1}u=f_i$ on the boundary of Ω for each $i(1\leq i\leq m)$.

For a unit disk it was solved by Riquier and for a bounded open set by M. Itô [2].

In this note we shall show that for an unbounded open subset Ω its problem can be solved by means of Wiener ideal boundary Δ_W and Wiener harmonic boundary Γ_W of Ω (Theorem 3).

Let f_i be a continuous function on $\Delta_w(1 \le i \le m)$. Then there exists a function $h_{(f_1,f_2,...,f_m)}$ on Ω such that

$$\Delta^m h_{(f_1, f_2, \dots, f_m)} = 0$$

in Ω and for each $i(1 \le i \le m)$, on Γ_w

$$(-\Delta)^{i-1}h_{(f_1,f_2,...,f_m)}=f_i$$

if and only if Ω satisfies the condition

$$\int G_{\varrho}^{\scriptscriptstyle (m-1)}(x,y)dy < +\infty$$

for some point x in Ω , where G_{Ω} being the Green function of Ω ,

$$G_{\varrho}^{(m-1)}(x,y) = \int \cdots \int G_{\varrho}(x,z_1) G_{\varrho}(z_1,z_2) \cdots G_{\varrho}(z_{m-2},y) dz_1 dz_2 \cdots dz_{m-2}.$$

2. Let Ω be an open subset of \mathbb{R}^n . We call a real valued function u in the class $C^{2m}(\Omega)$ is polyharmonic of order m in Ω if we have in Ω

$$\Delta^m u = \left(\sum_{k=1}^n \frac{\partial^2}{\partial x_k^2}\right)^m u = 0.$$

For the Green function G_{ϱ} of Ω and an integer $i \ge 1$, we put

$$G_{\it g}^{(i)}(x,y) = \int \cdots \int G_{\it g}(x,z_1) G_{\it g}(z_1,z_2) \cdots G_{\it g}(z_{i-1},y) dz_1 dz_2 \cdots dz_{i-1}.$$

By a suitable normalization we have $(-\Delta_y)^i G_{\varrho}^{(i)}(x,y) = \varepsilon_x$ in Ω , where ε_x is the Dirac measure at x.

From now on, let $m(\ge 1)$ be a fixed integer and i be any integer $1 \le i \le m$. As to the solution of Riquier's problem, M. Itô [2] proved

Lemma 1. Let Ω be a bounded open subset of R^n and $(f_i)_{i=1}^m$ be a system of bounded continuous functions on the boundary $\partial \Omega$ of Ω . Then there exist m positive Radon measures $\varepsilon_{x,c,\Omega}^{(i)}(1 \leq i \leq m)$ on $\partial \Omega$, and the function