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1o Let C be the unit circle and D be the open unit disk in the
complex plane.

Theorem 1. There exists a holomorphic function f in D for
which the set I(f) of Plessner points [3, p. 147] is residual [3, p. 75]
on C and of logarithmic measure [7, p. 64] zero.

Theorem 2. There exists a bounded univalent holomorphic func-
tion f in D for which the set M(f) of Meier points [3, p. 153] is of
logarithmic measure zero.

Furthermore, we obtain some improvements of Bagemihl-Seidel’s
results [2, p. 191, Corollaries 3 5], one of which may be stated as

Theorem 3. There exist a holomorphic function f in D and a
subset S of C, being of logarithmic measure zero, such that the radial
cluster set [3, p. 72] of f at any point of C-S coincides with the unit
circle.

Remark 1o A bounded set of logarithmic measure zero is known
to be of logarithmic capacity zero. In Remark 3 of the next section
we ascertain this for our special example S.

I wish to express my warmest thanks to Prof. K. Hatano for
valuable conversations.

2. We construct a subset S of C satisfying the following three
conditions"

( i ) C-S is of first Baire category on C.
(ii) SisaG, subsetofC.
(iii) The logarithmic measure of S is zero.
Let K={z,...,z,...} be a countable dense subset of C and let

e,..., e,.., be a sequence of positive numbers such that e-0 as
k-oo. Let ( be an open disk containing z whose radius is

r exp(- 2 /e) (k, n= 1, 2, ..). Let

__
and let (’]=.

Then S= C is the desired one. Indeed, for any k, the closed set
C- is nowhere dense on C since CK is open and dense on C.
Therefore the set

( ) c-s- ) (c-,)

is of first category on C. To prove (iii) we use the same notation as
in [7, p. 63 ft.] with h(t)= {log (1/ t)}-. We use "disks" instead of


