244. A Criterion for Boundedness of a Linear Map from any Banach Space into a Banach Function Space*)

By J. Diestel
(Comm. by Kinjirô Kunugı, M. J. A., Dec. 12, 1970)

[Abstract. Let (X, Λ, μ) be a totally sigma-finite complete measure space, ρ be a function norm with associate seminorm ρ^{\prime}, Y be a Banach space. If $L \rho$ is a Banach function space then for a linear mapping $T: Y \rightarrow L \rho$ be continuous it is necessary and sufficient that given $E \in \Lambda$ with $\rho^{\prime}\left(\chi_{E}\right)<\infty$ the functional T_{E} defined by $T_{E} y=\int(T y)(x) \chi_{E}(x) d \mu(x)$ is continuous. It is noted that the collection $\left\{E \in \Lambda: \mu(E), \rho^{\prime}\left(\chi_{D}\right)<\infty\right\}$ is sufficient to generate the same integration theory as Λ and if ρ satisfies the Fatou property this collection even generates (algebraically and isometrically) the function space $L \rho$.]

This note is based entirely on the notes of Luxemburg and Zaanen [13], a knowledge of which, will be assumed throughout; the notations of those authors will be preserved and references to [13] Will simply note the particular results of [13] without further modification. Of course, reference to papers other than [13] will be modified by the appropriate reference list number.

Theorem. Let ρ be a function norm satisfying the Riesz-Fischer property (so L ρ is a Banach function space); suppose that Y is a Banach space and that $T: Y \rightarrow L \rho$ is a linear mapping.

Then in order that T be continuous it is necessary and sufficient that the following hold: given $E \in \Lambda$ such that $\chi_{E} \in L \rho^{\prime}$, the linear functional T_{E} defined on Y to the scalar field by

$$
T_{E} y=\int_{E}(T y)(x) d \mu(x)
$$

be a mumber of Y^{\prime}.
Proof. Necessity follows immediately from Lemma 13.1.
To prove sufficiency, we note that since ρ is a function norm it follows from Corollary 11.5 that ρ^{\prime} is saturated (in fact, ρ 's being a norm is equivalent to $\rho^{\prime \prime}$ s being saturated), so that by Theorem 8.7 there exists a sequence of subsets X_{n} of X satisfying $X_{n} \nearrow X, \mu\left(X_{n}\right)<\infty$, and $\rho^{\prime}\left(\chi_{X_{n}}\right)<\infty$ (of course, $X_{n} \in \Lambda$; for the rest of the proof we will assume the sequence $\left\{X_{n}\right\}$ to be chosen according to these requirements.

We now consider the linear mapping $T: Y \rightarrow L \rho$. We will show

[^0]
[^0]: *) The research for this paper was supported in part by West Georgia College Faculty Research Grant No. 699.

