200. The Multipliers for Vanishing Algebras

By Tetsuhiro Shimizu
Department of Mathematics, Tokyo Institute of Technology
(Comm. by Kinjirô Kunugr, m. J. A., June 12, 1971)

Let G be a locally compact Abelian group with Haar measure m. Let Γ be the dual group of G. We denote by $L^{1}(G)$ the group algebra of G. For any measurable subset S of G, define $L(S)$ to be the subspace of $L^{1}(G)$ consisting of all functions which vanish locally almost everywhere on the complement of S. When $L(S)$ forms a subalgebra of $L^{1}(G)$, we call it a vanishing algebra. If $L(S)$ is a vanishing algebra, then we may assume S is a measurable semigroup [2]. In this paper we shall assume $L(S) \neq\{0\}$ to avoid triviality. Let $M(G)$ be the Banach algebra consisting of all bounded regular Borel measures on G. For any Borel set A, put $M(A)=\{\mu \in M(G): \mu$ is concentrated on $A\}$.

If A is a Banach algebra, then a mapping $T: A \rightarrow A$ is called a multiplier of A if $x(T y)=(T x) y(x, y \in A)$.

In this short note, we shall show the characterization of the multipliers for certain vanishing algebras.

Theorem. If S is an open semigroup, then the space \mathfrak{M} of all multipliers for $L(S)$ is $M\left(S_{0}\right)$, where $S_{0}=\left\{t \in G: S \supset S+t\right.$ l.a.e. $\left.{ }^{*}\right\}$.

Proof. At first, we shall show that for any $T \in \mathfrak{M}$ there is a measure $\lambda \in M(G)$ such that $T f=\lambda * f$ for each $f \in L(S)$ and $\|T\|=\|\lambda\|$. For each $f, g \in L(S)$ we have $(\widehat{T f}) \hat{g}=\hat{f}(\widehat{T g})$. Since $L(S)$ is contained in no proper colsed ideal of $L^{1}(G)$ [3], for each $\gamma \in \Gamma$ we can choose a function $g \in L(S)$ such that $\hat{g}(\gamma) \neq 0$. Define $\varphi(\gamma)=(\widehat{T g})(\gamma) / \hat{g}(\gamma)$. The equation $(\widehat{T f}) \hat{g}=\hat{f}(\widehat{T g})$ shows that the definition of φ is independent of the choice of g. For φ so defined it is apparent that $(\widehat{T f})=\varphi \hat{f}$. Let ψ be a second function on Γ such that $(\widehat{T f})=\psi \hat{f}$ for each $f \in L(S)$. Then since for each $\gamma \in \Gamma$ there is a function $g \in L(S)$ such that $\hat{g}(\gamma) \neq 0$, the equation $(\varphi-\psi) \hat{f}=0$ for each $f \in L(S)$ reveals that $\varphi=\psi$. Evidently, φ is continuous. Let $\gamma_{1}, \cdots, \gamma_{n} \in \Gamma$ and a_{1}, \cdots, a_{n} be any complex numbers. Let t_{0} be a point of S. If $\left\{x_{\alpha}\right\}$ is an approximate identity of $L^{1}(G)$, then we can assume $\left(x_{\alpha}\right)_{t_{0}} \in L(S)$, where $\left(x_{\alpha}\right)_{t_{0}}(t)=x_{\alpha}\left(t+t_{0}\right)$. Put $b_{i}=a_{i}\left(t_{0}, \gamma_{i}\right)(i=1,2, \cdots, n)$ and $y_{\alpha}=T\left(\left(x_{\alpha}\right)_{t_{0}}\right)$. We have that

[^0]
[^0]: *) By $A \supset B$ l.a.e., we mean that $B \backslash A$ is locally negligible.

