200. The Multipliers for Vanishing Algebras

By Tetsuhiro SHIMIZU

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1971)

Let G be a locally compact Abelian group with Haar measure m. Let Γ be the dual group of G. We denote by $L^1(G)$ the group algebra of G. For any measurable subset S of G, define L(S) to be the subspace of $L^1(G)$ consisting of all functions which vanish locally almost everywhere on the complement of S. When L(S) forms a subalgebra of $L^1(G)$, we call it a vanishing algebra. If L(S) is a vanishing algebra, then we may assume S is a measurable semigroup [2]. In this paper we shall assume $L(S) \neq \{0\}$ to avoid triviality. Let M(G) be the Banach algebra consisting of all bounded regular Borel measures on G. For any Borel set A, put $M(A) = \{\mu \in M(G) : \mu \text{ is concentrated on } A\}$.

If A is a Banach algebra, then a mapping $T: A \rightarrow A$ is called a multiplier of A if $x(Ty) = (Tx)y(x, y \in A)$.

In this short note, we shall show the characterization of the multipliers for certain vanishing algebras.

Theorem. If S is an open semigroup, then the space \mathfrak{M} of all multipliers for L(S) is $M(S_0)$, where $S_0 = \{t \in G : S \supset S + t \text{ l.a.e.}^*\}$.

Proof. At first, we shall show that for any $T \in \mathfrak{M}$ there is a measure $\lambda \in M(G)$ such that $Tf = \lambda * f$ for each $f \in L(S)$ and $||T|| = ||\lambda||$. For each $f, g \in L(S)$ we have $(Tf)\hat{g} = \hat{f}(Tg)$. Since L(S) is contained in no proper colsed ideal of $L^1(G)$ [3], for each $\gamma \in \Gamma$ we can choose a function $g \in L(S)$ such that $\hat{g}(\gamma) \neq 0$. Define $\varphi(\gamma) = (Tg)(\gamma)/\hat{g}(\gamma)$. The equation $(Tf)\hat{g} = \hat{f}(Tg)$ shows that the definition of φ is independent of the choice of g. For φ so defined it is apparent that $(Tf) = \varphi \hat{f}$. Let ψ be a second function on Γ such that $(Tf) = \psi \hat{f}$ for each $f \in L(S)$. Then since for each $\gamma \in \Gamma$ there is a function $g \in L(S)$ such that $\hat{g}(\gamma) \neq 0$, the equation $(\varphi - \psi)\hat{f} = 0$ for each $f \in L(S)$ reveals that $\varphi = \psi$. Evidently, φ is continuous. Let $\gamma_1, \dots, \gamma_n \in \Gamma$ and a_1, \dots, a_n be any complex numbers. Let t_0 be a point of S. If $\{x_\alpha\}$ is an approximate identity of $L^1(G)$, then we can assume $(x_\alpha)_{t_0} \in L(S)$, where $(x_\alpha)_{t_0}(t) = x_\alpha(t+t_0)$. Put $b_i = a_i(t_0, \gamma_i)(i=1, 2, \dots, n)$ and $y_\alpha = T((x_\alpha)_{t_0})$. We have that

^{*)} By $A \supset B$ l.a.e., we mean that $B \setminus A$ is locally negligible.