199. Certain Convexoid Operators

By Takayuki FURUTA

Faculty of Engineering, Ibaraki University, Hitachi

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1971)

1. Introduction. We call a bounded linear operator T on a complex Hilbert space H, according to [2], paranormal if (1) $||T^2x|| \ge ||Tx||^2$

for every unit vector x in H.

It is easy to verify that any hyponormal^{*} operator is paranormal. In fact if T is hyponormal

$$|Tx||^{2} = (T^{*}Tx, x) \leq ||T^{*}Tx|| \leq ||T^{2}x||$$

for every unit vector x.

It is known that there exists a paranormal but non-hyponormal operator and every power of paranormal operator is again paranormal [2], also paranormal operator is normaloid^{*)} [2] [9] and moreover paranormal operator is compact if some of its powers is compact [5] and that compact paranormal operator is normal [9], and the inverse of a paranormal is also [2] [9].

In [1] T. Ando has given an elegant algebraic characterization of paranormal operator and he has proved several interesting results. Some of them are as follows; a bounded linear operator T is normal if and only if both T and T^* are paranormal and they have the common kernel, and moreover a paranormal operator is normal if some of its power is normal as a generalization of Stampfli's result [12] in the case of hyponormal operator.

Following Halmos [7] the numerical range W(T) is defined as follows:

$$W(T) = \{(Tx, x); ||x|| = 1\}.$$

An operator T is said to be *convexoid* [7] if

$$\overline{W(T)} = co \sigma(T)$$

where $co \sigma(T)$ means the convex hull of the spectrum $\sigma(T)$ of T and the $\overline{W(T)}$ means the closure of the set W(T). An operator T is said to be *spectraloid* [7] if

$$w(T) = r(T)$$

or equivalently

$$w(T^n) = (w(T))^n$$
 $(n=1, 2, \cdots)$ [4]

^{*)} An operator T is said to be hyponormal if $||Tx|| \ge ||T^*x||$ for every vector x and normaloid if $||T^n|| = ||T||^n$ $(n=1,2,\cdots)$ [7].