Suppl.]

196. The Theory of Nuclear Spaces Treated by the Method of Ranked Space. IV

By Yasujirô NAGAKURA Science University of Tokyo

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1971)

§ 5. The completion of the linear ranked space Φ , (2).

Lemma 20. Let $\hat{\Phi}_0$ be the subset of $\hat{\Phi}$ consisting of those equivalence classes which contain an R-Cauchy sequence $\{g_n\}$ for which $g_1 = g_2$ $= g_3 = \cdots$.

The mapping T of Φ onto $\hat{\Phi}_0$, which maps $g \in \Phi$ to the class \hat{g} containing the sequence consisting of a single element g, is bijective and we have $g \in V_i$ (0, r, m) if and only if $\hat{g} \in \hat{V}_i$ (0, r, m).

Proof. Let g and f be two different elements in Φ . Then there exists no class containing two sequences $\{g_n\}$ and $\{f_n\}$ with $g_n = g$, $f_n = f$ for every n.

Because if it is not true, $\{g_n\}$ and $\{f_n\}$ are equivalent. And then there exists a fundamental sequence of neighbourhoods $\{V_{r_i}(0, r_i, m_i)\}$ such that $g_i - f_i \in V_{r_i}(0, r_i, m_i)$ for every *i*, that is, $g - f \in V_{r_i}(0, r_i, m_i)$ for every *i*. This implies g = f by Lemma 8 in [4].

Next, we shall prove that $g \in V_i(0, r, m)$ implies $\hat{g} \in \hat{V}_i(0, r, m)$. Since we have $V_i(0, 1, m) = U_i(0, \varepsilon_i, m)$ by the paper [4], we obtain $V_i(0, r, m) = U_i(0, r\varepsilon_i, m)$. Hence we have

$$\left\|\sum_{k=1}^m \lambda_{k,n_{i-1},n_i}(g,\varphi_{k,n_i})\varphi_{k,n_{i-1}}\right\| < r\varepsilon_i.$$

Then there exists some number r', 0 < r' < r such that

$$\left\|\sum_{k=1}^m \lambda_{k,n_{i-1},n_i}(g,\varphi_{k,n_i})\varphi_{k,n_{i-1}}\right\| < r'\varepsilon_i < r\varepsilon_i.$$

Consequently we obtain $g \in V_i$ (0, r', m). By Definition 5, this shows $\hat{g} \in \hat{V}_i$ (0, r, m).

Conversely, if we have $\hat{g} \in \hat{V}_i$ (0, r, m), there exist some number r', 0 < r' < r and some integer N such that

$$g_n = g \in V_i(0, r', m)$$
 if $n \ge N$.

And then we obtain $g \in V_i(0, r, m)$.

Theorem 2. The set $\hat{\Phi}_0$ is dense in $\hat{\Phi}$.

Proof. Let \hat{g} be any element in $\hat{\phi}$. And let an *R*-Cauchy sequence $\{g_n\}$ belong to \hat{g} . Then there exists a fundamental sequence of neighbourhoods $\{V_{i_i}(0, r_i, m_i)\}$, such that the relations $n \ge i$ and $m \ge i$ imply

$$g_n - g_m \in V_{r_i} (0, r_i, m_i).$$

Let \hat{g}_n be the class containing the reptitive sequence g_n, g_n, \cdots .