190. A Note on Ribbon 2-Knots

By Akio O mae
Department of Mathematics, Kōbe University
(Comm. by Kinjirô Kunugı, m. J. A., May 12, 1971)

1. We shall consider the 2 -spheres in a 4 -sphere that are locally flat, which will be called 2-knots. S. Kinoshita [2] showed that for each polynomial $f(t)$ with $f(1)= \pm 1$, there exists a 2 -sphere in a 4 -sphere whose Alexander polynomial is defined and equal to $f(t)$. Recently, by an another method, D. W. Sumners [4] [5] showed that the existence of the 2 -knot K^{2} such that i) the Alexander polynomial of K^{2} is $f(t)$ above, and moreover, ii) the second homotopy group of the complement of K^{2} has the " Γ-torsion".

It is easy to see that the 2 -knots which S . Kinoshita constructed in [2] are ribbon 2-knots [6] [7]. He gave us the following question.
"Is every Sumners's 2-knot a ribbon 2-knot?"
In this paper we will give the affirmative answer of this question. We will consider everything from the combinatorial standpoint of view. By $S^{n}, \dot{X}, \partial X$ and $N(X, Y)$, we shall denote an n-sphere, the interior of X, the boundary of X and the regular neighborhood of X in Y, respectively. $X \simeq Y$ means that X is homeomorphic to Y, and $\# X$ the connected sum of the m copies of X.
2. We will give some knowledge of ribbon and Sumners's 2 -knots [5] [7].

Definition 2.1. A locally flat 2 -sphere K^{2} in S^{4} will be called a ribbon 2 -knot, if there is a ribbon map ρ of a 3 -ball B^{3} into S^{4} satisfying the following conditions
(1) $\rho \mid \partial B^{3}$ is an embedding and $\rho\left(\partial B^{3}\right)=K^{2}$,
(2) the self-intersections of B^{3} by ρ consists of mutually disjoint 2-balls $D_{1}^{2}, \cdots, D_{s}^{2}$,
(3) the inverse set $\rho^{-1}\left(D_{i}^{2}\right)$ consists of disjoint 2-balls $D_{i}^{\prime 2}$ and $D_{i}^{\prime / 2}$ such that $D_{i}^{\prime 2} \subset \stackrel{\circ}{B}^{3}$ and $\partial D_{i}^{\prime \prime 2}=D_{i}^{\prime \prime 2} \cap \partial B^{3}(i=1, \cdots, s)$.

Let N_{i}^{3} be a spherical-shell, which is homeomorphic to $S^{2} \times[0,1]$ $(i=1, \cdots, m)$. A system of spherical-shells $N_{1}^{3} \cup \cdots \cup N_{m}^{3}$ will be called trivial if they are mutually disjoint and such that
i) the 2-link $\partial N_{1}^{3} \cup \cdots \cup \partial N_{m}^{3}$ of $2 m$ components is of trivial type in $S^{4}-\left(\dot{N}_{1}^{3} \cup \cdots \cup \dot{N}_{m}^{3}\right)$; that is, there are mutually disjoint 3 -balls B_{1}^{3}, $\cdots, B_{2 m}^{3}$ in $S^{4}-\left(\dot{N}_{1}^{3} \cup \cdots \cup \dot{N}_{m}^{3}\right)$ such that $\partial N_{i}^{3}=\partial B_{i}^{3} \cup \partial B_{m+i}^{3}(i=1, \cdots, m)$,
ii) for each i the 3 -sphere $B_{i}^{3} \cup N_{i}^{3} \cup B_{m+i}^{3}$ bounds a 4 -ball B_{i}^{4} in S^{4} such that $B_{i}^{4} \cap B_{j}^{4}=\emptyset(i \neq j)$.

