185. δ_p and Countably Paracompact Spaces

By J. M. BOYTE

Appalachian State University

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1971)

In [3], Mack defines the term δ -normal, and proves that if I is the closed unit interval, then a space X is countably paracompact if and only if $X \times I$ is δ -normal. In this paper we define the term δ_p which is stronger than δ -normal, but is strictly weaker than countable paracompactness, and is strictly weaker than normality; and we prove the following:

Theorem 1. The following are equivalent for a space X

(i) The space X is countably paracompact.

(ii) The space X is δ_p and countably metacompact.

(iii) The space X is δ_p and every countable open cover of X has a countable semi-refinement of closed sets.

(iv) If C is a countable open cover of X, then there exists a countable collection $L = \{L_i | i = 1, 2, \dots\}$ of open refinements of C such that for each $x \in X$ there is some L_i that is locally finite with respect to x.

(v) If I is the closed unit interval, then $X \times I$ is δ_p .

We observe that (ii) of the above theorem is a slight generalization of a condition proven by Dowker [2]; further; we point out that Theorem 1 in [3] is used in proving (v) of the above theorem.

Definition. If X is a space and C is an open cover of X, then L is a semi-refinement of C if each member of L is contained in the union of a finite subset of C.

Definition. If X is a space and L is a collection of subsets of X, then L is locally finite with respect to a subset A of X, if for each $x \in A$, there exists an open set V, $x \in V$, such that V intersects only finitely many members of L.

Definition. Let X be a space and let N be a cardinal number. Then X is called an N_p space, if for each open cover C, cardinality of C less than or equal N, there exists for each closed set F contained in any member of C, an open refinement of C that is locally finite with respect to F. In the special case when N= aleph zero, we will denote N_p by δ_p .

For an infinite cardinal N, a topological space is N-normal if each pair of disjoint closed sets, one of which is a regular G_N -set, have disjoint neighborhoods [3]. A set B is called a regular G_N -set if it is the intersection of at most N closed sets whose interiors contain B [3].