183. On Weakly Compact Spaces

By Masao Sakai

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1971)

A topological space S is said to be AU-weakly compact, if every countable open covering of S contains a finite subfamily whose union is deuse in S, and S is said to be MP-weakly compact, if every pairwise disjoint infinite family of open sets O_{α} , $\alpha \in A$, has a point $p \in S$ whose every neighbourhood meets infinitely many O_{α} . The point p is called a cluster point of the family $\{O_{\alpha}\}_{\alpha \in A}$. K. Iseki [1] [2] [3] and S. Kasahara [4] proved the following:

Proposition. The following properties of a regular space S are equivalent:

(1) S is AU-weakly compact.

(2) S is MP-weakly compact.

(3) Every locally finite family of open sets O_{α} contains a finite subfamily whose union covers the union of all O_{α} .

(4) Every locally finite open covering of S contains a finite subcovering.

We shall prove only that $(2) \rightarrow (3)$ using the following:

Lemma. Every point-finite covering of a topological space contains an irreducible subcovering.

This lemma was proved by R. Arens and J. Dugundji [5].

Proof that $(2) \rightarrow (3)$. Let S be a regular MP-weakly compact space and let $\{O_{\alpha}\}_{\alpha \in A}$ be a locally finite family of open sets of S. By the lemma, there is an irreducible subfamily $\{O_{\beta}\}_{\beta \in B}$ such that $\bigcup_{\beta \in B} O_{\beta}$ $= \bigcup_{\alpha \in A} O_{\alpha}$. We shall prove that B is a finite set. Let us assume that B is an infinite set. By the irreducibility of $\{O_{\beta}\}_{\beta \in B}$ for every $\beta \in B$, $O_{\beta} - \bigcup_{r \in B - \{\beta\}} O_r$ is non-empty, then it contains a point p_{β} such that $p_{\beta} \in O_{\beta}$ and $p_{\beta} \in O_{\gamma}$, $\gamma \in B - \{\beta\}$. By the regularity of the space S, every p_{β} has an open neighbourhood V_{β} such that $\bar{V}_{\beta} \subset O_{\beta}$. It is easily seen that for every $\beta \in B$ $p_{\beta} \in V_{\beta}$ and $p_{\beta} \in \overline{V}_{\gamma}$, $\gamma \in B - \{\beta\}$. By the locally finiteness of $\{O_{\beta}\}_{\beta \in B}$, $\bigcup_{\tau \in B - \{\beta\}} \overline{V}_{\tau}$ is closed, then $W_{\beta} = V_{\beta} - \bigcup_{\tau \in B - \{\beta\}} \overline{V}_{\tau}$ is open and contains p_{β} . It is obvious that the open infinite family $\{W_{\beta}\}_{\beta \in B}$ is pairwise disjoint and locally finite. By the property (2), the family $\{W_{\beta}\}_{\beta \in B}$ has at least one cluster point, contrary to the locally finiteness Then B must be a finite set and the proof of of the family $\{W_{\beta}\}_{\beta \in B}$. $(2) \rightarrow (3)$ is completed.

Let S be a topological space. Each family of regularly closed sets \bar{O}_{a} , $\alpha \in A$, of S is called a *regularly closed family*, and each covering of S