230. On the Radon Transform of the Rapidly Decreasing Functions on Symmetric Spaces

By Masaaki EGUCHI Faculty of General Education, Hiroshima University (Comm. by Kinjirô Kunugi, M. J. A., Dec. 13, 1971)

- 1. Let S be a Riemannian globally symmetric space and \hat{S} the Radon dual space of S consisting of the holocycles in S. The purpose of this paper is to study the relations between the Schwartz functions on S and those on \hat{S} , that is, to study an S-theory in a sense. For the detailed proof, see [1].
- 2. The Schwartz spaces. Let G denote the largest connected group of isometries of S in compact open topology. Let o be any point in S, K the isotropy subgroup of G at o and \mathfrak{f}_0 and \mathfrak{g}_0 their Lie algebras, respectively. Let $\mathfrak{g}_0 = \mathfrak{f}_0 + \mathfrak{p}_0$ be the corresponding Cartan decomposition of \mathfrak{g}_0 . Let $\mathfrak{h}_{\mathfrak{p}_0}$ denote a Cartan subalgebra for the space S, $A_{\mathfrak{p}}$ the analytic subgroup of G corresponding to $\mathfrak{h}_{\mathfrak{p}_0}$ and M the centralizer of $\mathfrak{h}_{\mathfrak{p}_0}$ in K. Let extend $\mathfrak{h}_{\mathfrak{p}_0}$ to a Cartan subalgebra \mathfrak{h}_0 of \mathfrak{g}_0 , of the corresponding roots let P_+ denote the set of those whose restriction to $\mathfrak{h}_{\mathfrak{p}_0}$ is positive in the ordering defined by a fixed Weyl chamber C in $\mathfrak{h}_{\mathfrak{p}_0}$. Then we obtain an Iwasawa decomposition $G = KA_{\mathfrak{p}}N$. Put $\rho = \frac{1}{2} \sum_{\alpha \in P_+} \alpha$ as usual.

Let D(S) (resp. $D(\hat{S})$) denote the algebra of G-invariant differential operators on S (resp. \hat{S}) and \hat{D} the image of the isomorphism of D(S) into $D(\hat{S})$.

For $x \in S = G/K$ and $g \in G$ such that $\pi(g) = x$ by the natural mapping π of G onto G/K, there exists a unique element $X \in \mathfrak{p}_0$ such that $x = \exp X \cdot K$. Now put

$$\begin{aligned} &\omega(x) = \{ \det \left(\sinh \operatorname{ad} X / \operatorname{ad} X \right) \}^{1/2}, \\ &\sigma(g) = \sigma(x) = \|X\|, \\ &\xi(x) = \int_{K} \exp \left\{ -\rho(H(\exp X \cdot k)) \right\} dk. \end{aligned}$$

For $f \in C^{\infty}(S)$, $D \in \mathcal{D}(S)$ and integer $d \geq 0$, put

$$egin{aligned} &
u_{D,d}(f) \! = \! \sup_{S} |Df| (1+\sigma)^d \xi^{-1}, \ & \tau_{D,d}(f) \! = \! \sup_{S} |Df| (1+\sigma)^d \omega. \end{aligned}$$

We now define the Schwartz space after Harish-Chandra [2].

Definition 1. Let C(S) (resp. S(S)) denote the space of all $f \in C^{\infty}(S)$ such that $\nu_{D,d}(f) < +\infty$ (resp. $\tau_{D,d}(f) < +\infty$) for all $D \in \mathbf{D}(S)$ and integers $d \ge 0$.