229. Covering-Languages of Grammars

By Takumi Kasai
Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kinjirô Kunugi, m. J. A., Dec. 13, 1971)

1. Introduction.

Two derivation trees (phrase-markers) are called congruent in [1] if merely by relabelling of the nonterminal nodes they may be made the same. A marker is an equivalence class of congruent derivation trees. In this note we introduce a new type of language, called a covering language, which can describe the set of markers generated by a contextfree grammar. The intrinsic structure of a context-free grammar G is characterized by the covering language $K(G)$ of G.

Let $G=(N, \Sigma, P, S)$ be a context-free grammar with the set of nonterminal symbols N, the set of terminal symbols Σ, the set of productions P and the initial symbol S. Each production π is usually expressed in a unique way in the following canonical form

$$
\pi: X \rightarrow t_{0} Y_{1} t_{1} \cdots t_{n-1} Y_{n} t_{n}
$$

where X and $Y_{i}(1 \leq i \leq n)$ are nonterminal symbols and the t are possibly empty terminal words. The integer $n \geq 0$ determines the number of occurrences of nonterminal symbols at the right side of the production π and is said to be the rank of π. The rank of a production π is denoted by $\sigma_{P}(\pi)$. For each production $\pi: X \rightarrow t_{0} Y_{1} t_{1} \cdots Y_{n} t_{n}$, let $\left\langle t_{0}, t_{1}\right.$, $\left.\cdots, t_{n}\right\rangle$ be an abstract symbol. We shall call this the form of π and the integer n is said to be the rank of this form. The form of π will be denoted by $f(\pi)$ and the set of all forms of the productions in P will be denoted by $f(P)$, i.e. $f(P)=\{f(\pi) \mid \pi$ in $P\}$. We extend f to a length preserving homomorphism $f: P^{*} \rightarrow\{f(P)\}^{*}$ by defining $f(\varepsilon)=\varepsilon$ and $f\left(\pi_{1} \cdots \pi_{k}\right)=f\left(\pi_{1}\right) \cdots f\left(\pi_{k}\right)$.

The notation $x \xlongequal{\alpha} y$ or $\alpha: x \Longrightarrow y$ means that there exists a leftmost derivation

$$
D: x=x_{0} \stackrel{\pi_{1}}{\Longrightarrow} x_{1} \stackrel{\pi_{2}}{\Longrightarrow} \cdots \stackrel{\pi_{n}}{\Longrightarrow} x_{n}=y
$$

such that $\alpha=\pi_{1} \pi_{2} \cdots \pi_{n}$, where in the transition from x_{i} to $x_{i+1}(0 \leq i<n)$ the production π_{i} is applied. The word $\pi_{1} \pi_{2} \cdots \pi_{n}$ is called the associate of D and $f\left(\pi_{1} \pi_{2} \cdots \pi_{n}\right)$ is called the form of D.

In this paper, unless stated otherwise, by "grammar" we shall mean context-free grammar and by "derivation" we shall mean leftmost derivation.

Given a grammar $G=(N, \Sigma, P, S)$, let

