227. Remark on the Essential Spectrum of Symmetrizable Operators

By Yoshio Itagaki
Department of Mathematics, Miyagi University of Education, Sendai
(Comm. by Kinjirô Kunugi, m. J. A., Nov. 12, 1971)

1. Introduction. We will use the following notion and notations. We mainly refer to [3] ; see also [1].

Let T be a closed linear operator in a Banach space $E, \rho(T)$ its resolvent set, and $\sigma(T)$ its spectrum. The dimension of the null space of $T, N(T)$, written $\alpha(T)$, will be called the kernel index of T and the deficiency of the range T in $E, R(T)$, written $\beta(T)$, will be called the deficiency index of T. The index $\kappa(T)$ is defined by

$$
\kappa(T)=\alpha(T)-\beta(T)
$$

If the operator T has a finite index, it is called a Fredholm operator.

We denote by $\sigma_{e m}(T)$ the set of all complex number λ for which $T-\lambda I$ is not a Fredholm operator with index zero and call it the essential spectrum of T. The set of points of $\sigma(T)$ which is not an isolated eigenvalue λ of finite multiplicity, namely $\alpha(T-\lambda I)<\infty$, will be denoted by $\sigma_{0}(T)$. Here an isolated eigenvalue means an eigenvalue which is an isolated point of the spectrum.

Let X be a Banach space and H a Hilbert space such that
i) $X \subset H$, and the embedding mapping; $X \rightarrow H$ is continuous,
ii) X is dense in H.

The purpose of this paper is to prove the following theorem:
Theorem. Let T be a closed linear operator in X and essentially self-adjoint in H, that is, its smallest closed extension (or its closure) in H is self-adjoint. Then

$$
\sigma_{0}(T \mid X)=\sigma_{e m}(T \mid X)
$$

Here we denoted by $T \mid X$ the operator considered in X. Similarly we will denote by \bar{T} the closure of T in $H, \sigma(\bar{T} \mid H)$ the spectrum of \bar{T} in H and so on.

Since the index of the Fredholm operator is invariant under the addition of compact operators [3, Theorem V.2.1], in particular, when K is a linear compact operator in X,

$$
\sigma_{e m}(T \mid X)=\sigma_{e m}(T+K \mid X)
$$

In addition, if K is symmetrizable, that is, symmetric with respect to the inner product of $H, T+K$ is essentially self-adjoint [4, p. 288, Theorem 4.4] and, by our Theorem

