224. Results Related to Closed Images of M-Spaces. I

By Kiiti MORITA*) and Thomas RISHEL**)

(Comm. by Kinjirô KUNUGI, M. J. A., Nov. 12, 1971)

1. Introduction. In 1969, J. Nagata began a discussion of characterizations of images of M-spaces under various continuous maps (see, for instance [4] and [5]). Other images of M-spaces have been characterized by Wicke [7], Chiba [1] and by Rishel [6]. One such characterization which has not yet been carried out is that of closed images of M-spaces. It is the purpose of this paper to demonstrate that characterization.

In this paper, all maps are continuous and onto; the symbol "N" will refer to the natural numbers. All spaces will be considered to be T_1 -spaces.

2. Preliminaries about covers.

Definition 2.1. A system $\{F_{\alpha} : \alpha \in \Omega\}$ of closed sets from a space X is said to be *hereditarily closure preserving* if and only if: for any system $\{M_{\alpha} : \alpha \in \Omega\}$ of closed sets in X such that $M_{\alpha} \subset F_{\alpha}$ for every $\alpha \in \Omega$, $\bigcup \{M_{\alpha} : \alpha \in \Omega\} = \operatorname{Cl} [\bigcup \{M_{\alpha} : \alpha \in \Omega\}].$

Definition 2.2. A family $\{B_n : n \in N\}$ of sets in a space X is said to form a *q*-sequence at $x \in X$ if and only if:

(a) $x \in B_n$ for every $n \in N$,

(b) for every point-sequence $\{x_n\}$ such that $x_n \in B_n$ for every $n \in N$, $\{x_n\}$ clusters.

Definition 2.3. A sequence of closed covers $\{\mathcal{A}_n\}$ of a space X is said to be almost q-refining if and only if for any point $x \in X$, any system of sets $\{B_n\}$, such that $B_n \in \mathcal{A}_n$ for all $n \in N$ and $x \in B_n$ for all $n \in N$, is either hereditarily closure preserving or else forms a q-sequence at x.

Morita [3] originally defined *M*-spaces.

Definition 2.4. A space X is said to be an *M*-space if and only if there exists a normal sequence of open covers $\{U_1, U_2, \dots\}$ of X satisfying

(1) every point-sequence of the form $\{x_n\}$, where $x_n \in St(x, U_n)$ for all *n* and for fixed $x \in X$, has a cluster point.

Definition 2.5 (Nagata [5]). A space Y is quasi-k if and only if, given $F \subset Y$, F is closed whenever $F \cap K$ is relatively closed in K for every

^{*)} Tokyo University of Education.

^{**} Dalhousie University. This author's work was begun at Dalhousie University and completed at Tokyo University of Education under Canadian Research Council Grant A-3999.