222. Euclidean Space Bundles and Disk Bundles

By Masahisa Adachi

Department of Mathematics, Kyoto University

(Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1971)

0. Introduction.

A useful property of the orthogonal group O(n) is that it leaves invariant the unit disk D^n and unit sphere S^{n-1} of \mathbb{R}^n . Consequently one may pass freely from \mathbb{R}^n -bundles to D^n - and S^{n-1} -bundles in the case where the structure group is O(n). This convenient coincidence does not occur in the topological category. W. Browder [2] showed that some \mathbb{R}^n -bundles do not contain any D^n -subbundles.

In this paper we shall study on the relationship between \mathbb{R}^{n} -bundles and D^{n} -bundles.

The main result of this paper is the following

Theorem 1. Let K be a locally finite simplicial complex of dimension k, and k < n-3 and $n \ge 6$. Then the set of all equivalence classes of D^n -bundles over K is canonically in one-to-one correspondence with the set of all equivalence classes of \mathbb{R}^n -bundles over K.

In § 1 we prepare on notations and terminologies used later. In § 2 we shall show the stability theorem of the homotopy groups $\pi_k(\mathcal{H}_0(n))$. Here we use the recent result of R. Kirby and L. Siebenmann [4]. In § 3 we shall prove the theorem 1.

The author is grateful to Professors N. Shimata and H. Toda for their kind criticisms.

1. Notations and terminologies.

Let $\mathcal{H}_0(n)$ be the space of all homeomorphisms of the Euclidean *n*-space \mathbb{R}^n onto itself preserving the origin 0 with compact-open topology. Then $\mathcal{H}_0(n)$ forms a topological group with the composition of maps (cf. Kister [5]).

By an \mathbb{R}^n -bundle we shall mean a fibre bundle whose fibre is the Euclidean *n*-space \mathbb{R}^n and structure group $\mathcal{H}_0(n)$.

Let $B_{\mathcal{H}_0(n)}$ be the classifying space for the topological group $\mathcal{H}_0(n)$. Its existence is assured by J. Milnor [6]. Then for a finite complex K, the set $[K, B_{\mathcal{H}_0(n)}]$ of all homotopy classes of continuous maps of K into $B_{\mathcal{H}_0(n)}$ is in one-to-one correspondence with the set of all equivalence classes of \mathbb{R}^n -bundles over K.

On the other hand, we shall denote by TOP_n the *css*-group of all isomorphism-germs of trivial microbundles over simplexes (for the precise definition, see [1]; where we write H_n for TOP_n). Let B_{TOP_n} be