213. On the Structure of Hyperfunctions with Compact Supports

By Akira KANEKO^{*)} Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., Sept. 13, 1971)

We discuss an analogue of the classical structure theorem of distributions on a compact set. We mainly treat the case of one variable (n=1). The case of several variables with some applications will be discussed by a somewhat different method in a paper under preparation (see [3]).

Theorem 1. Let u be a hyperfunction of one variable with support in the interval K=[a, b]. Then u can be expressed as follows: $u=J_1(D)\mu_1+J_2(D)\mu_2+J_3(D)\mu_3,$

where μ_i , i=1, 2, 3 are measures with supports in [a, b], and $J_i(D)$, i=1, 2, 3 are local operators with constant coefficients. (Local operators with constant coefficients are differential operators of infinite order in the theory of hyperfunctions; see, e.g., $[1], \S 2$. On the operation of $J_i(D)$, the measures μ_i are considered as hyperfunctions.)

We prepare two lemmas. Let $\mathscr{B}[K]$ denote the space of hyperfunctions with support in K. Let $H_{K}(\zeta)$ denote the supporting function $\sup_{x \in K} \operatorname{Re} \langle x, i\zeta \rangle$ of K $(i=\sqrt{-1})$.

Lemma 2. The Fourier transform $\tilde{u}(\zeta)$ of $u \in \mathcal{B}[K]$ is an entire function which satisfies the following growth condition:

 $|\tilde{u}(\zeta)| \leq C \exp(|\zeta|/\varphi(|\zeta|) + H_{\kappa}(\zeta)),$

where $\varphi(r)$ is a monotonely increasing function of $r \ge 0$ and satisfies $\varphi(0)=1, \varphi(r) \rightarrow \infty$ when $r \rightarrow \infty$.

Proof. The following estimate for $\tilde{u}(\zeta)$ is well known:

 $|\tilde{u}(\zeta)| \leq C_{\epsilon} \exp(\epsilon |\zeta)| + H_{\kappa}(\zeta))$ for any $\epsilon > 0$.

Put

 $\psi(r) = \sup_{|\zeta|=r} |\widetilde{u}(\zeta) \exp\left(-H_{\kappa}(\zeta)\right)|$ and $\psi_1(r) = r/\log\left(e + \psi(r)\right)$.

From the above estimates it is easily seen that $\psi_1(r) \to \infty$ when $r \to \infty$. Thus the function $\varphi(r) = \max \{ \inf \psi_1(r), 1 \}$ serves our purpose. q.e.d.

Lemma 3. Assume that the function $\varphi(r)$ has the properties mentioned in Lemma 2. Then for any prescribed constants A, C, c_1, c_2 there exists a local operator J(D) whose Fourier transform $J(\zeta)$ satisfies the following estimate from below:

 $|J(\zeta)| \ge C \exp\left(A |\zeta|/\varphi(|\zeta|)\right) \qquad for |\operatorname{Im} \zeta| \le c_1 + c_2 |\operatorname{Re} \zeta|.$

^{**} Partially supported by Fûjukai.