209. Hypersurfaces of a Euclidean Space R^{4m}

By Susumu TSUCHIYA and Minoru KOBAYASHI Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 13, 1971)

Introduction. K. Yano and M. Okumura [5] have shown that the existence of the so called (f, g, u, v, λ) -structure on hypersurfaces of an almost contact manifold and on submanifolds of codimension 2 of an almost Hermitian manifold.

D. E. Blair, G. D. Ludden and K. Yano [1] have studied complete hypersurfaces immersed in S^{2n+1} and showed that (1) if the Weingarten map of the immersion and f commute then the hypersurface is a sphere, and (2) if the Weingarten map K of the immersion and f satisfy fK+Kf=0 and the hypersurface is of constant scalar curvature, then it is a great sphere or $S^n \times S^n$.

On the other hand, Y. Y. Kuo [2] has shown the existence of an almost contact 3-structure on R^{4m+3} and that of a Sasakian 3-structure on S^{4m+3} and on the real projective space P^{4m+3} .

The main purpose of this paper is, after showing that an orientable hypersurface of a Hermitian manifold with quaternion structure admits an almost contact 3-structure (ϕ_i, ξ_i, η_i) , i=1, 2, 3, to classify complete hypersurfaces of R^{4m} satisfying $\phi_i H - H \phi_i = 0$, i=1, 2, 3 and those satisfying $\phi_i H + H \phi_i = 0$, i=1, 2, 3. The results are:

Theorem 1. Let N be a complete hypersurface of $R^{4m}(m \ge 2)$. If the Weingarten map of the immersion and ϕ_i , i=1, 2, 3 commute, then N is one of the following

(i) a hyperplane,

(ii) a sphere,

(iii) $R^{4t} \times S^{4s+3}, t+s=m-1, t \ge 1, s \ge 0.$

Theorem 2. Let N be a complete hypersurface of $R^{4m}(m \ge 1)$. If the Weingarten map H of the immersion and ϕ_i satisfy $\phi_i H + H \phi_i = 0$, then it is a hyperplane.

For the case m=1 in Theorem 1, we have, as a corollary,

Corollary. Let N be a complete hypersurface of \mathbb{R}^4 . If the Weingarten map of the immersion and ϕ_i , i=1, 2, 3 commute, then N is either a hyperplane or a sphere.

1. Preliminaries. First, let $M = M^{4m}$ be a differentiable manifold with quaternion structure (Φ_1, Φ_2) , where a quaternion structure is, by definition, a pair of two almost complex structures Φ_1 , Φ_2 such that (1) $\Phi_1 \Phi_2 + \Phi_2 \Phi_1 = 0.$