# 209. Hypersurfaces of a Euclidean Space R $^{4 m}$ 

By Susumu Tsuchiya and Minoru Kobayashi<br>Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô Kunugi, M. J. A., Sept. 13, 1971)

Introduction. K. Yano and M. Okumura [5] have shown that the existence of the so called ( $f, g, u, v, \lambda$ )-structure on hypersurfaces of an almost contact manifold and on submanifolds of codimension 2 of an almost Hermitian manifold.
D. E. Blair, G. D. Ludden and K. Yano [1] have studied complete hypersurfaces immersed in $S^{2 n+1}$ and showed that (1) if the Weingarten map of the immersion and $f$ commute then the hypersurface is a sphere, and (2) if the Weingarten map $K$ of the immersion and $f$ satisfy $f K+K f=0$ and the hypersurface is of constant scalar curvature, then it is a great sphere or $S^{n} \times S^{n}$.

On the other hand, Y. Y. Kuo [2] has shown the existence of an almost contact 3 -structure on $R^{4 m+3}$ and that of a Sasakian 3-structure on $S^{4 m+3}$ and on the real projective space $P^{4 m+3}$.

The main purpose of this paper is, after showing that an orientable hypersurface of a Hermitian manifold with quaternion structure admits an almost contact 3 -structure ( $\phi_{i}, \xi_{i}, \eta_{i}$ ), $i=1,2,3$, to classify complete hypersurfaces of $R^{4 m}$ satisfying $\phi_{i} H-H \phi_{i}=0, i=1,2,3$ and those satisfying $\phi_{i} H+H \phi_{i}=0, i=1,2,3$. The results are :

Theorem 1. Let $N$ be a complete hypersurface of $R^{4 m}(m \geqq 2)$. If the Weingarten map of the immersion and $\phi_{i}, i=1,2,3$ commute, then $N$ is one of the following
(i) a hyperplane,
(ii) a sphere,
(iii) $\quad R^{4 t} \times S^{4 s+3}, t+s=m-1, t \geqq 1, s \geqq 0$.

Theorem 2. Let $N$ be a complete hypersurface of $R^{4 m}(m \geqq 1)$. If the Weingarten map $H$ of the immersion and $\phi_{i}$ satisfy $\phi_{i} H+H \phi_{i}=0$, then it is a hyperplane.

For the case $m=1$ in Theorem 1, we have, as a corollary,
Corollary. Let $N$ be a complete hypersurface of $R^{4}$. If the Weingarten map of the immersion and $\phi_{i}, i=1,2,3$ commute, then $N$ is either a hyperplane or a sphere.

1. Preliminaries. First, let $M=M^{4 m}$ be a differentiable manifold with quaternion structure ( $\Phi_{1}, \Phi_{2}$ ), where a quaternion structure is, by definition, a pair of two almost complex structures $\Phi_{1}, \Phi_{2}$ such that

$$
\begin{equation*}
\Phi_{1} \Phi_{2}+\Phi_{2} \Phi_{1}=0 \tag{1}
\end{equation*}
$$

