202. On the Asymptotic Behavior of Solutions of Certain Third Order Ordinary Differential Equations

By Tadayuki Hara
Osaka University

(Comm. by Kenjiro Shoda, m. J. A., Sept. 13, 1971)

1. Introduction. Our purpose here is to study the behavior as $t \rightarrow \infty$ of solutions of the differential equations

$$
\begin{equation*}
\dddot{x}+a(t) \ddot{x}+b(t) \dot{x}+c(t) x=e(t) \quad\left(\dot{x}=\frac{d x}{d t}\right), \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\dddot{x}+a(t) \ddot{x}+b(t) \dot{x}+c(t) h(x)=e(t) \tag{1.2}
\end{equation*}
$$

We assume the following conditions throughout this note.
(c_{1}) $\quad a(t), b(t)$ and $c(t)$ are positive and continuously differentiable functions on $[0, \infty)$.
$\left(c_{2}\right) \quad e(t)$ is continuous and absolutely integrable on $[0, \infty)$.
$\left(c_{3}\right) \quad h(x)$ is continuously differentiable and real-valued for all x.
(c_{4}) $f(x, y), f_{x}(x, y), g(x, y)$ and $g_{x}(x, y)$ are continuous and real-valued for all (x, y).

In [2], the author considered the conditions under which all solutions of the non-autonomous equations (1.1) and (1.3) with $e(t) \equiv 0$ and $h(x)=x$ tend to zero as $t \rightarrow \infty$.
2. Theorems.

Theorem 1. Suppose that $a(t), b(t)$ and $c(t)$ are continuously differentiable and $e(t)$ is continuous on $[0, \infty)$ and following conditions are satisfied;
(i) $A \geqq a(t) \geqq a_{0}>0, B \geqq b(t) \geqq b_{0}>0, C \geqq c(t) \geqq c_{0}>0$ for $t \in[0, \infty)$,
(ii) $x h(x)>0(x \neq 0), H(x)=\int_{0}^{x} h(\xi) d \xi \rightarrow+\infty$ as $|x| \rightarrow \infty$,
(iii) $\frac{a_{0} b_{0}}{C}>h_{1} \geqq h^{\prime}(x)$,
(iv) $\mu a^{\prime}(t)+b^{\prime}(t)-\frac{1}{\rho} c^{\prime}(t)<\frac{a_{0} b_{0}-C h_{1}}{2} \quad\left(\mu=\frac{a_{0} b_{0}+C h_{1}}{2 b_{0}}, \rho=\frac{\mu}{h_{1}}\right)$,
(v) $\int_{0}^{\infty}\left|c^{\prime}(t)\right| d t<\infty, c^{\prime}(t) \rightarrow 0$ as $t \rightarrow \infty$,
(vi) $\int_{0}^{\infty}|e(t)| d t<\infty$.

Then every solution $x(t)$ of (1.2) is uniform-bounded and satisfies $x(t) \rightarrow 0, \dot{x}(t) \rightarrow 0, \ddot{x}(t) \rightarrow 0$ as $t \rightarrow \infty$.

Corollary 1. Suppose that the conditions (i), (v), (vi) and in addi-

