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Throughout this paper we assume that spaces are completely
regular T,-spaces and maps are continuous. The completion of a space
X with respect to its finest uniformity is called the topological comple-
tion of X, and denoted by xX. According to Morita [8] a space X is
called pseudoparacompact (resp. pseudo-Lindelsf) if xX is paracompact
(resp. Lindelof).

As for these notions, in the same paper Morita proved the follow-
ing remarkable results.

Theorem 1 (Morita [8], Theorems 3.1, 3.2 and 3.5).

1) pX is compact iff X is pseudocompact.

2) pX is always a paracompact M-space for any M-space X.

(8) Let X be an M-space. X is pseudo-Lindelof iff it is the quasi-
perfect tnverse image of a separable metric space.

The characterizations of pseudoparacompactness and pseudo-
Lindeldfness have been obtained by Howes [4] and Ishii [5] independ-
ently. On the other hand, in [2] Hanai and Okuyama (cf. Isiwata [6])
essentially proved the following result: “If a space X is the inverse
image of a pseudocompact space under an open quasi-perfect map,
then X is pseudocompact”. Here the assumption that the map is open
cannot be dropped in general ([3] Example 2.4). Analogously to this
result, in § 1 we shall prove the following theorem which is a partial
answer to a problem posed by Ishii [5] concerning (2) and (3) of
Theorem 1: “Is pseudoparacompactness or pseudo-Lindelofness pre-
served under taking the inverse image by a quasi-perfect (or perfect)
map?”’

Theorem 2. If there is an open quasi-perfect map ¢: X—Y from
a space X onto a pseudoparacompact (resp. pseudo-Lindeldf) space Y,
then X is pseudoparacompact (resp. pseudo-Lindelof).

In §2, by virtue of recent results obtained by Morita, we shall
prove the following

Theorem 3. Let o: X—Y be an open quasi-perfect map from a
space X onto a space Y.

Q) If pY is locally compact and paracompact, then so is pX.

(2) If uY is g-compact, then so is pX.

§1. DProof of Theorem 2. Before proving Theorem 2, we shall



