129. One Condition for R(K) = A(K)

By Yuko Kobayashi

(Comm. by Kinjirô Kunugi, M. J. A., Sept. 12, 1972)

We will show here one condition to coincide A(K), all continuous functions on the compact plane set K which are analytic in \mathring{K} , and R(K), all those functions on K which are approximable by rational functions with poles off K. This sharpens the result of Theorem 4.1 in [3].

Let U be a bounded open set in the complex plane C, \overline{U} be the closure of U, and ∂U be the boundary of U. Let A(U) be all continuous functions on \overline{U} which are analytic in U and R(U) be all those functions which are approximable uniformly on \overline{U} by rational functions with poles off \overline{U} . Let $H^{\infty}(U)$ be the uniform algebra of all bounded analytic functions on U.

Lemma 1. Let B be a subalgebra in $H^{\infty}(U)$ which contains A(U). Then there is a continuous map from the maximal ideal space M_B of B onto \overline{U} .

Proof. The coordinate function Z belongs to B and the Gelfand transform \hat{Z} of Z is the desired map. For since $B \subseteq H^{\infty}(U)$, every homomorphism in the maximal ideal space of $H^{\infty}(U)$ determines a homomorphism in M_B by restricting it to B. So $\hat{Z}(M_B)$ contains \overline{U} . Suppose $\lambda \notin \overline{U}$, then $(z-\lambda)^{-1} \in A(U)$, that is, $z-\lambda$ is invertible in B. Thus $\varphi(z-\lambda) \neq 0$ for all $\varphi \in M_B$. Hence λ does not belong to $\hat{Z}(M_B)$ and $\hat{Z}(M_B) = \overline{U}$. This completes the lemma.

The analogous result is valid by replacing the algebra A(U) by the algebra R(U).

For B as above, we denote the fibers $M_{\lambda}(B)$ of M_{B} over points $\lambda \in \overline{U}$ by

$$M_{\lambda}(B) = \{ \varphi \in M_B ; \varphi(z) = \lambda \}.$$

If $\lambda \in U$, then $M_{\lambda}(B)$ consists of the single homomorphism.

Lemma 2. Let B be as above lemma. Then for each $\lambda \in \partial U$ and for each $f \in A(U)$, $\varphi(f) = f(\lambda)$ for all $\varphi \in M_{\lambda}(B)$.

Proof. As seen in [2], by using the Vitushkin's operator, we can find a bounded sequence $f_n \in A(U)$ which is analytic at $\{\lambda\}$ and the f_n converges uniformly to f on \overline{U} . So it is sufficient to show the case that $g \in A(U)$ is analytic at $\{\lambda\}$, then

$$\frac{g(z)-g(\lambda)}{z-\lambda} \in A(U). \quad \text{Hence } \frac{g(z)-g(\lambda)}{z-\lambda} \in B. \quad \text{Thus } \varphi(g) = g(\lambda)$$

for all $\varphi \in M_B$ and $\varphi(z) = \lambda$. And the lemma is proved.