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1. In this paper we shall consider the relation among some
separation property of a function algebra on a compact Hausdorff space
and a property of a representing space of a strongly regular function
algebra. According to the first one, we can eliminate the assumption
"in a weak sense" from "approximately normal in a weak sense" and
"approximately regular in a weak sense" of the theorem in the previous
paper [5]. Recently D. Wilken [10] has shown that there exists no
strongly regular function algebra on the closed unit interval I except
C [I], according to the second one, we shall obtain a sufficient condition
fora representing space_ to satisfy that any strongly regular function
algebra on

_
is nothing but C(_) itself.

Throughout this paper let /() be the maximal ideal space of a
function algebra , F() the Silov boundary and Cho () the Choquet
boundary of , respectively. Further, let, for any subset S of _9 (or
ql(,_J)), f(S) be the set {f(x) x e S}, IS the restriction of to S and
A the uniform closure of l S in C(S).

2. We owe the following definition to D. Wilken [9].
Definition. A function algebra is said to be approximately

regular on _, iff, for each point p in X and each closed set K not con-
taining p and for any positive number , there is a function f in such
that f(p)--I and If(Y)e for y in K. is said to be approximately
normal on

_
iff, for any two disjoint closed subsets K1 and Ks and for

any e0, there is a function f in such that If(x)--11 on K and
f(Y) < on g2.

Let us define a new separation property of a function algebra as
follows.

Definition. A function algebra satisfies the condition (.) on a
closed subset S of /() iff for any connected closed subset K in S, the
Silov boundary of lTc is K.

It is evident that if is approximately normal, then is approxi-
mately regular and if is approximately regular, then . satisfies the
condition (.). We know by the following example that, in general, (.)
is weaker than approximate regularity [5].

Example. Let )={z;Izll}, T--{z;[zl=l}, ={f e C()) for


