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This paper contains two theorems. First we estimate the order of
Fourier coefficients of unction of Wiener’s class V which is strictly
larger class than that o the class o unctions o bounded variation.
We have been able to find out the best constant which terms out to be
V(f)u-21/q in our case. The second theorem concerns about how many
Fourier coefficients can have exactly the order n-/.

1o Let f be a real valued 2u-periodic unction defined on [0, 2u]
and let O--to_t_t_... _t--2z be a partition o [0,2z]. We write,
or l_pc,

(1) V,(f)--sup{= [f(t)-- f(t_),’} 1/

where sup is aken over all partitions o [0, 2]. We say hat a unetion

f belongs to V or f is the unetion o p-th variation i V(f)< oo.

In terms o Wiener [5] we denote the class o all 2-periodie unetions
o p-th variation on the segment [0, 2] by Vv. We call Vv(f) the p-h
otal variation o f. It can easily be verified that
( 2 ) V Vq (l_<p < q< oo)

For p-1, Vx is the class o functions o boundedis a strict inclusion.
variation. Let

la + (a= cos nx + b sin nx)( 3
2

be a Fourier series of f. In the case V the following theorem is well
known [1] (see also [7]).

Theorem A. If f belongs to V then
( 4 ) [a[_< V(f)(zn)-; [b[_< V(f)(zrn) -1

for all nl, where V(f) is the first total variation of f over [0, 2].
Recently M. Taibleson [3] has proved a weaker orm o Theorem A

by an elementary method (see also [1] page 210). M. and S. Izumi [2]
have given another elementary proo of Theorem A with the best con-
stant V(f)z- in (4). We extend Theorem A in the ollowing way.

Theorem 1. If f belongs to V (l_poo) then

(5) {[, an[ Vp(f)zc-121/qn-/p
b

_
V(f)=-2/n /


