59. A Generalization of Ascoli's Theorem

By Hidegorô NAKANO

Mathematical Institute, Hokkaido University (Comm. by K. KUNUGI, M.J.A., April 12, 1954)

Let R be an abstract space. For a double system of mappings $a_{\tau,\lambda}$ of R into uniform spaces $S_{\lambda}(\gamma \in \Gamma_{\lambda}, \lambda \in \Lambda)$, there exists the weakest uniformity U on R for which $a_{\tau,\lambda}(\gamma \in \Gamma_{\lambda})$ is equi-continuous for every $\lambda \in \Lambda$. In an earlier paper¹⁾ we have obtained a condition for which R is complete by U. In this paper we shall consider conditions for which R is totally bounded by U and as a generalization of Ascoli's theorem, we shall prove Theorem II which is essentially more general than that obtained by N. Bourbaki.²⁾

Lemma 1. Let a_{ν} ($\nu=1, 2, ..., n$) be a finite number of mappings of R into uniform spaces S_{ν} with uniformities \mathfrak{B}_{ν} ($\nu=1, 2, ..., n$) respectively. If the image $a_{\nu}(R)$ is totally bounded in S_{ν} for every $\nu=1, 2, ..., n$, then for any $U_{\nu} \in \mathfrak{B}_{\nu}$ ($\nu=1, 2, ..., n$) we can find a finite number of points $a_{\mu} \in R$ ($\mu=1, 2, ..., m$) such that

$$R = \sum_{\mu=1}^m \prod_{\nu=1}^n \mathfrak{a}_{
u}^{-1} U_
u(a_\mu),$$

that is, for any $x \in R$ we can find μ for which

$$\mathfrak{a}_{\nu}(x) \in U_{\nu}(\mathfrak{a}_{\nu}(a_{\mu}))$$
 for every $\nu = 1, 2, \ldots, n$.

Proof. For any $U_{\nu} \in \mathfrak{B}_{\nu}$ ($\nu = 1, 2, ..., n$) we can find by definition $V_{\nu} \in \mathfrak{B}_{\nu}$ such that

$$V_{\nu}^{-1} \times V_{\nu} \leq U_{\nu} \qquad (\nu = 1, 2, \ldots, n).$$

Since the image $a_{\nu}(R)$ is totally bounded by assumption, we can find a finite number of points $y_{\nu,\mu} \in S_{\nu}$ $(\mu=1, 2, \ldots, m)$ such that

$$\mathfrak{a}_{
u}(R) \subset \sum_{\mu=1}^{m_{\mathcal{Y}}} V_{
u}(y_{
u,\mu}) \qquad (
u = 1, 2, \dots, n).$$

Corresponding to every system $\mu_{\nu}=1, 2, \ldots, m_{\nu}$ ($\nu=1, 2, \ldots, n$) we select a point $a_{\mu_{1}\mu_{2}...\mu_{n}} \in R$ such that

$$\mathfrak{a}_{\nu}(a_{\mu_1\mu_2\dots\mu_m}) \in V_{\nu}(y_{\nu,\mu_n}) \quad \text{for every } \nu = 1, 2, \dots, n_n$$

if exists. Then for any $x \in R$ we can find $\mu_{\nu}(\nu=1, 2, ..., n)$ such that

 $\mathfrak{a}_{\nu}(x) \in V_{\nu}(y_{\nu,\mu_{\nu}})$ for every $\nu=1, 2, \ldots, n$,

¹⁾ H. Nakano: On completeness of uniform spaces, Proc. Japan Acad., 29, 490-494 (1953).

²⁾ N. Bourbaki: Topologie générale, **3**, Chap. 10, espaces fonctionnels. Paris (1949).