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The object of the present note is to develop the structure
heory of commutative semigroups. By a semigroup we shall always
mean a commutative semigroup with identity element 1 and zero
element 0. If semigroup S has no identity and zero elements, it
can always be imbedded in another S, which has them. S consists
of the elements of S together with new elements 1 and 0. The
product of two elements x, y e S is defined to be the old product
xy of S if x, y e S, otherwise x0=0=0x and xlx-lx for all x e S.
Moreover, every ideaF of S is again an ideal of S and every
principal ideal of S which is generated by an element x e S is also
a principal ideal of S generated by the same element. Therefore,
the assumption that a semigroup has identity and zero elements
does not restrict us.

Let S be a semigroup (we recall our convention that "semi-
group" means a commutative semigroup with identity element and
zero element) and p an element of S, and we define the following
(p)-equivalence relation in S"

Two elements a and b of S are (p)-equivalent (denoted by aPb)
if and only if

Then it is clear that the (p)-equivalence relation satisfies the follow-
ing equivalence relations"

P
( 1) a,.,.,a for all a S,

(2’) if aPb then ba,
(3’) if aPb and bPc then

Now we define the new equivalence relation (denoted by ),
using the above (p)-equivalence relation, in S as follows-

ab if and only if a Pb for all p e S.
It is easy to see that the relation satisfies the ollowing equiva-
lence relations"
(1) a..-a or all aeS,
(2) if a..b then ba,
(3) if a..b and bc then a.c.
In the discussion below, we denote by S the set of all elements in


