76. Transgression and the Invariant k_n^{q+1}

By Minoru NAKAOKA Osaka City University, Osaka

(Comm. by K. KUNUGI, M.J.A., May 13, 1954)

§ 1. Let X be a topological space with vanishing homotopy groups $\pi_i(X)$ for $i \neq n, q(1 < n < q)$, and let $x_0 \in X$ be a base point. For the sake of brevity, we write in the following $\pi_n = \pi_n(X)$ and $\pi_q = \pi_q(X)$. We call a space of type (π, r) any space Y such that $\pi_i(Y) = 0(i \neq r)$ and $\pi_r(Y) \approx \pi$. Then, following Cartan-Serre,¹⁾ we have the fiber space (E, p, B) in the sense of Serre²⁾ such that

- i) the total space E is of the same homotopy type as X,
- ii) the base space B is a space of type (π_n, n) , and $X \subseteq B$,
- iii) the fiber $F=p^{-1}(x_0)$ is a space of type (π_q, q) .

Consider in this fiber space the transgression $\tau: E_{q+1}^{**0,q} \xrightarrow{d^{q+1}} E_{q+1}^{**q+1,0}$ of the singular cohomology spectral sequence with coefficients in π_q .²⁾ Then, since the singular homology group $H_i(F; \pi_q) = 0$ for i < q, we have $E_{q+1}^{**0,q} = H^q(F; \pi_q)$, $E_{q+1}^{*g+1,0} = H^{q+1}(B; \pi_q)$ and

$$r = p^{*-1} \circ \delta^* : H^q(F; \pi_q) \longrightarrow H^{q+1}(B; \pi_q),$$

where $\delta^*: H^q(F; \pi_q) \longrightarrow H^{q+1}(E, F; \pi_q)$ is the coboundary operator, and $p^*: H^{q+1}(B; \pi_q) \longrightarrow H^{q+1}(E, F; \pi_q)$ is the homomorphism induced by p. Let $b^q \in H^q(F; \pi_q)$ be the basic cohomology class,³⁾ and let $k_n^{q+1} \in H^{q+1}(B; \pi_q)$ be the geometrical realization of the Eilenberg-MacLane invariant $k_n^{q+1} \in H^{q+1}(\pi_n, n; \pi_q)$ of the space $X^{(4)}$ Then b^q and k_n^{q+1} are related by τ as follows:

(1.1) $\tau \boldsymbol{b}^{q} = -\overline{\boldsymbol{k}}_{n}^{q+1}.$

The main purpose of the present note is to give a proof of (1.1). The proof is given by making use of the theory of J. H. C. Whitehead.⁵⁾ In the proof we shall obtain several relations among the various invariants of *E*, *X*, *B* and *F*. In conclusion, we shall formally extend (1.1) to a more general situation.

§ 2. Following J. H. C. Whitehead, ⁵⁾ we have the exact sequence $\sum_{*}(K)$ and the partial exact sequence $\sum_{*}(K;G)$ for any simply connected *CW*-complex K and any Abelian group G:

$$\sum_{*}(K):\cdots\xrightarrow{j_{*}}H_{r+1}(K)\xrightarrow{d_{*}}\Gamma_{r}(K)\xrightarrow{i_{*}}\Pi_{r}(K)\xrightarrow{j_{*}}\cdots,$$

$$\sum_{*}(K;G):\cdots\xrightarrow{j^{*}}\Gamma^{r}(K;G)\xrightarrow{i^{*}}\Pi^{r}(K;G)\xrightarrow{d^{*}}H^{r+1}(K;G)\xrightarrow{j^{*}}\cdots$$
We are chosen defined from the components

These are derived from the sequence