75. Ergodic Decomposition of Stationary Linear Functional*)

By Hisaharu Umegaki
Department of Mathematics, Tokyo Institute of Technology
(Comm. by K. Kunugi, m.J.A., May 13, 1954)

In this note, we shall prove ergodic decomposition of stationary semi-trace of a separable D^{*}-algebra with a motion, applying the reduction theory of von Neumann [2] ${ }^{1)}$ and a decomposition of a two-sided representation [3]. The theorem in this paper contains the ergodic decompositions of stationary trace on separable C^{*}-algebra with a motion and the ergodic decomposition of invariant regular measure on separable locally compact Hausdorff space with a group of homeomorphisms. (Cf. Th. 4 and Th. 7 of [3].)

Let \mathfrak{N} be a D^{*}-algebra (: normed *-algebra over the complex number field) with an approximate identity $\left\{e_{\alpha}\right\}$ and with a motion G where G is meant by any group of isometric *automorphisms on \mathfrak{N}. (Cf. [3].) Let τ be a G-stationary semi-trace of \mathfrak{H}, i.e. τ is a linear functional on \mathfrak{H}^{2} (=self-adjoint (s.a.) subalgebra generated by $\{x y ; x, y \varepsilon \sharp\}$) such that $\tau\left(x^{*} x\right) \geqq 0, \tau(x y)=\tau(y x)=\bar{\tau}\left(x^{*} y^{*}\right), \tau\left((x y)^{*} x y\right)$ $\leqq\|x\|^{2} \tau\left(y^{*} y\right), \tau\left(\left(e_{\alpha} x\right)^{*} e_{\alpha} x\right) \xrightarrow[\alpha]{\longrightarrow} \tau\left(x^{*} x\right)$ and $\tau\left(x^{s} y^{s}\right)=\tau(x y)$ for all $x, y \varepsilon, \mathfrak{Z}$ and $s \varepsilon G$. Putting $\mathfrak{R}=\left\{x ; \tau\left(x^{*} x\right)=0, x \varepsilon \mathfrak{N}\right\}, \mathfrak{R}$ is a two-sided ideal in \mathfrak{N}. Let \mathfrak{Y}^{θ} be the quotient algebra $\mathfrak{H} / \mathfrak{Y}$ and x^{θ} the class $\left(\varepsilon \mathfrak{H}^{\theta}\right)$ containing x which is an incomplete Hilbert space with inner product $\left(x^{\theta}, y^{\theta}\right)=\tau\left(y^{*} x\right)$. Let \mathfrak{S} be the completion of \mathfrak{H}^{θ} with respect to the norm $\left\|y^{\theta}\right\|\left(=\tau\left(y^{*} y\right)^{1 / 2}\right)$. Putting $x^{a} y^{\theta}=(x y)^{\theta}, x^{b} y^{\theta}=(y x)^{\theta}, j y^{\theta}=y^{* \theta}$ and $U_{s} y^{\ominus}=y^{s \theta}$ for all $x, y \varepsilon \mathfrak{A}$ and $s \varepsilon G,\left\{x^{a}, x^{b}, j, \mathfrak{F}\right\}$ defines a two-sided representation of \mathfrak{H}. (Cf. [3].) Moreover $\left\{U_{s}, \mathfrak{F}\right\}$ defines a dual unitary representation of G. Indeed, for any $x, y \varepsilon \mathfrak{N}\left(U_{s} y^{9}, U_{s} y^{\theta}\right)$ $=\left(x^{s \theta}, y^{s \theta}\right)=\tau\left(y^{s} x^{* s}\right)=\left(y^{\theta}, x^{\theta}\right)$ and $U_{s t} y^{\theta}=y^{s \theta}=U_{t} y^{s \theta}=U_{t} U_{s} y^{\theta}$. Hence U_{s} has uniquely unitary extension on \mathfrak{J} which satisfies the required relations. These representations are uniquely determined by the given τ within unitary equivalence. (Cf. [3].)

For any collection F of bounded operators and two W^{*}-algebras W_{1}, W_{2} on a Hilbert space, we denote F^{\prime} the collection of all bounded operators commuting for all $A \varepsilon F$ and $W_{1} \smile W_{2}$ the W^{*}-algebra generated by W_{1} and W_{2}.

Let W^{a}, W^{b} and W_{G} be W^{*}-algebras generated by $\left\{x^{c} ; x \varepsilon \mathfrak{R}\right\}$, $\left\{x^{b} ; x \varepsilon\{\mathfrak{l}\}\right.$ and $\left\{U_{s} ; s \varepsilon G\right\}$ respectively, then $W^{a}=W^{\prime \prime}$ and $j A j=A^{*}$ for all $A \varepsilon W^{a} \frown W^{b}$. (Cf. Th. 2 of [3].)
*) This paper is a continuation of the previous paper [3].

1) Numbers in brackets refer to the references at the end of this paper.
