75. Ergodic Decomposition of Stationary Linear Functional*)

By Hisaharu UMEGAKI

Department of Mathematics, Tokyo Institute of Technology (Comm. by K. KUNUGI, M.J.A., May 13, 1954)

In this note, we shall prove ergodic decomposition of stationary semi-trace of a separable D^* -algebra with a motion, applying the reduction theory of von Neumann [2]¹⁾ and a decomposition of a two-sided representation [3]. The theorem in this paper contains the ergodic decompositions of stationary trace on separable C^* -algebra with a motion and the ergodic decomposition of invariant regular measure on separable locally compact Hausdorff space with a group of homeomorphisms. (Cf. Th. 4 and Th. 7 of [3].)

Let \mathfrak{A} be a D^* -algebra (:normed *-algebra over the complex number field) with an approximate identity $\{e_a\}$ and with a motion G where G is meant by any group of isometric *automorphisms on \mathfrak{A} . (Cf. [3].) Let τ be a G-stationary semi-trace of \mathfrak{A} , i.e. τ is a linear functional on \mathfrak{A}^2 (=self-adjoint (s.a.) subalgebra generated by $\{xy; x, y \in \mathfrak{A}\}$ such that $\tau(x^*x) \geq 0, \tau(xy) = \tau(xy) = \overline{\tau(x^*y^*)}, \tau((xy)^*xy)$ $\leq ||x||^2 \tau(y^*y), \ \tau((e_a x)^* e_a x) \xrightarrow{a} \tau(x^*x) \text{ and } \tau(x^* y^*) = \tau(xy) \text{ for all } x, y \in \mathfrak{A}$ and $s \in G$. Putting $\mathfrak{N} = \{x; \tau(x^*x) = 0, x \in \mathfrak{N}\}, \mathfrak{N}$ is a two-sided ideal in \mathfrak{A} . Let \mathfrak{A}^{θ} be the quotient algebra $\mathfrak{A}/\mathfrak{A}$ and x^{θ} the class $(\mathfrak{s}\mathfrak{A}^{\theta})$ containing x which is an incomplete Hilbert space with inner product $(x^{\theta}, y^{\theta}) = \tau(y^*x)$. Let \mathfrak{H} be the completion of \mathfrak{A}^{θ} with respect to the norm $||y^{\theta}|| (=\tau(y^*y)^{1/2})$. Putting $x^a y^{\theta} = (xy)^{\theta}$, $x^b y^{\theta} = (yx)^{\theta}$, $jy^{\theta} = y^{*\theta}$ and $U_{s}y^{\theta} = y^{s\theta}$ for all $x, y \in \mathfrak{A}$ and $s \in G$, $\{x^{a}, x^{b}, j, \mathfrak{H}\}$ defines a two-sided representation of \mathfrak{A} . (Cf. [3].) Moreover $\{U_s, \mathfrak{H}\}$ defines a dual unitary representation of G. Indeed, for any $x, y \in \mathfrak{A}(U_s y^0, U_s y^0)$ $=(x^{s_{\theta}}, y^{s_{\theta}})=\tau(y^{s_{x}}x^{s_{s}})=(y^{\theta}, x^{\theta})$ and $U_{st}y^{\theta}=y^{s_{t}\theta}=U_{t}y^{s_{\theta}}=U_{t}U_{s}y^{\theta}$. Hence U_{s} has uniquely unitary extension on \mathfrak{H} which satisfies the required relations. These representations are uniquely determined by the given τ within unitary equivalence. (Cf. [3].)

For any collection F of bounded operators and two W^* -algebras W_1 , W_2 on a Hilbert space, we denote F' the collection of all bounded operators commuting for all $A \in F$ and $W_1 \cup W_2$ the W^* -algebra generated by W_1 and W_2 .

Let W^a , W^b and W_G be W^* -algebras generated by $\{x^a; x \in \mathfrak{A}\}$, $\{x^b; x \in \mathfrak{A}\}$ and $\{U_s; s \in G\}$ respectively, then $W^a = W^{b'}$ and $jAj = A^*$ for all $A \in W^a \cap W^b$. (Cf. Th. 2 of [3].)

^{*)} This paper is a continuation of the previous paper [3].

¹⁾ Numbers in brackets refer to the references at the end of this paper.