122. A Note on f-completeness

By Shouro KASAHARA Kobe University (Comm. by K. KUNUGI, M.J.A., July 12, 1954)

In a recent paper [2], A. W. Ingleton introduced a concept, spherically completeness, which is important for the extension of continuous linear mappings of a non-Archimedean normed space into another one. For a locally flat topological linear space whose topology is defined by a family of non-Archimedean semi-norms, the author has given a concept, *f*-completeness [3], on the extension property.

It is our purpose in this note to prove some conspicuous properties on *f*-completeness.

Throughout this note, we will denote by K a non-Archimedean valued field of which the valuation v is non-trivial, and assume that the locally flat linear spaces have the same K as the underlying field of scalars, and moreover by *f*-complete space we shall mean a locally flat linear space which is *f*-complete with respect to each of the non-Archimedean semi-norms defining the topology.

Let (E_i) be a family of locally flat linear spaces, and let us consider the product space $F = \prod_i E_i$, and denote by f_i the projection of F to E_i . Then it is clear that the topology of the linear space F is defined by the family of non-Archimedean semi-norms $p_x \circ f_i$, where for any i, p_a runs over the family of non-Archimedean semi-norms defining the topology of E_i . That is, the product space of a family of locally flat linear spaces is locally flat.

The following proposition can be readily verified.

Proposition 1. (a) The product of a family of f-complete spaces is also f-complete. (b) If W is a closed subspace¹⁾ of an f-complete space E, then the quotient space E/W is f-complete.

The part (a) of the proposition is clear.

Let p^* be the non-Archimedean semi-norm of E/W corresponding to a non-Archimedean semi-norm p of the space E. Then the inverse image of any p^* -flat variety in E/W by the canonical mapping π of E onto E/W is a p-flat variety in E, and hence the part (b) is clear.

Proposition 2. Let W be an f-complete subspace of a Hausdorff linear space E; then W admits a topological supplement,²⁾ and is therefore closed.

¹⁾ In this note "subspace" always means "linear subspace".

²⁾ Cf. (1) p. 16.