155. Dirichlet Problem on Riemann Surfaces. I (Correspondence of Boundaries)

By Zenjiro KURAMOCHI Mathematical Institute, Osaka University (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1954)

Let \underline{R} be an open abstract Riemann surface and let $\{\underline{R}_n\}$ (n = 1, 2, ...) be an exhaustion with compact relative boundaries $\{\partial \underline{R}_n\}^{(1)}$. Then $\underline{R} - \underline{R}_n$ is composed of a finite number of disjoint non compact subsurfaces $\{G_n^i\}$ $(i=1, 2, ..., i_n: n=1, 2, ...)$. Let $\{G_n^i\}$ be a sequence of non compact surfaces such that $G_n^i \supseteq G_{n+1}^{i\prime} \ldots, \bigcap_n G_n^i = 0$. Two sequences $\{G_n^i\}$ and $\{G_m^{i\prime}\}$ are called equivalent, if and only if, for any given number m, there exists a number n such that $G_m^{i\prime} \supseteq G_n^i$ and vice versa. We correspond an ideal point (component) to a class of equivalent sequences and denote the set of all ideal boundary points by B. A topology is introduced on $\underline{R} + B$ by the completion of \underline{R} . It is clear that $\underline{R} + B$ is closed, compact and that B is totally disconnected. This topology restricted in \underline{R} is homeomorphic to the original topology. We call this topology A-topology and denote $\underline{R} + B$ by \underline{R}^{*2} .

Let R be an abstract Riemann surface given as a covering surface over \underline{R} . We define the distance of two points p_1 and p_2 of Rby $\inf(\delta(p_1, p_2))$, where $\delta(p_1, p_2)$ is the diameter of the projection of a curve on R connecting p_1 and p_2 , and define the accessible boundary points of R by the completion of R with respect to this metric. When a continuous curve L on R converges to the boundary of Rand the projection of L on \underline{R} tends to a point of \underline{R}^* , we say that L determines an accessible boundary point (abbreviated to A.B.P.). It is well known that these two definitions are equivalent.

In this paper we suppose that \underline{R} is a null-boundary Riemann surface.

Lemma 1.1. Let R be a covering surface over \underline{R} , let $\underline{z}=f(z)$ $(\underline{z} \in \underline{R}, z \in R)$ be the mapping function from R into \underline{R} and let L be a curve on R which determines an A.B.P. whose projection on B is \underline{z}_0 . Suppose that R does not cover a subset of positive capacity of R. We map the universal covering surface R^{∞} conformally onto the unit circle $U_{\xi}:|\xi| < 1$ by $\xi = \varphi(z)$. If the image $l^{\mathfrak{d}}$ of L in U_{ξ} tends to a point ξ_0 on $|\xi|=1$, then the composed function $\underline{z}=f(\varphi^{-1}(\xi))$ has the

¹⁾ Thought this paper, we denote a relative boundary of G by ∂G .

²⁾ It is clear that a metric introduced in A-topology.

³⁾ In this case, it is proved that l does not osciliate.