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Closed Cowverings. II
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(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1954)

In the first paper under this title [4] we have introduced the
following notion. Let X be a topological space and {A.} a closed
covering of X. Then X is said to have the weak topology with re-
spect to {A,}, if the union of any subcollection {A4,;} of {4,} is
closed in X and any subset of « A, whose intersection with each

8
A, is open relative to the subspace topology of A; is necessarily
open in the subspace -« A;.

B

Any CW-complex (cf. [5]) has the weak topology with respect
to the closed covering which consists of the closures® of all the cells.
As another example we remark that a topological space has always
the weak topology with respect to any loeally finite closed covering.”

The purpose of this paper is to establish the following theorem.

Theorem 1. Let X be a topological space having the weak topolo-
gy with respect to a closed covering {A,}. Then X is paracompact and
normal if and only if each subspace A, ts paracompact and normal.

Thus if X has the weak topology with respect to a closed
covering {A,}, each of the following properties for all subspaces
A, implies the same property for X: (1) normality, (2) complete
normality, (38) perfect normality, (4) collectionwise normality, (5)
paracompactness and normality, (6) countable paracompactness and
normality. On the other hand, local compactness or metrizability®
for all A, does not necessarily imply the same property for X.

81. Lemmas

Lemma 1. Let A be a closed subset of a paracompact and normal
space X. If {G,} is a locally finite system in A which consists of
open Fy-sets G, of A, then there exists a locally finite system {H,}
of open Fi-sets of X with the following properties:

1) The closure of a cell e should be understood here as that in the complex, that
is, as the intersection of all subcomplexes containing e.

2) From Theorem 1 below it follows immediately that a topological space which
is the union of a locally finite collection of closed, paracompact, normal subspaces is
paracompact and normal; this proposition is remarked also by E. Michael [2].

3) We have learned that the latter proposition given in the remark at the end
of [4] was already proved by J. Nagata in his paper: On a necessary and sufficient
condition of metrizability, Jour. Inst. Polytech. Osaka City Univ., Ser. A, 1, 93-100
(1950).



