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1. The main object of this note is an application of my
heorem in the note 1. Torus homotopy groups are defined by
Fox 2], 3]; but in this note I have adopted another meaning
of the torus, and the methods of the paper are strongly influenced
by Spanier’s paper 4].

2. In this section and the followings, I will use the definitions
and lemmas of my note 1, which we refer to as D].

Lemma 2.1. Let (X,A) be a compact pair with dim (X-A)
<4n- 1. If a, , a’, B’ (X, A) -> (T, q) with a a’ and f-- ’ and
if g (X, A) --> (T V T, (q, q)) is a normalization of a B and g’:
(X, A) --> (T V T’, (q, q)) is a normalization of a’ B’, then 2g t2g’.

Proof. Since aa and BB, aBaB. Then ga
aBg. Hence, there is a map

F: (X I, A /) - (TTM Te, (q, q))
such that

F(x, O)--g(x)
for all xeX.

F(x,
Then (X 0) J (X 1) F-(T V T’), by D, Lemma 2.3, dim M< 4n
for any closed MXI-AI. Hence by D Theorem 3.5, a
normalization G of F exists such that G(x, t)---F(x, t) for (x, t) e F-(T V T). That is, there is a map

G :(X/, A I) --> (T- V T, (q, q))
such that

G(x, O)--F(x, 0)--g(x)
for all x e X.

G(x, 1)-F(x, 1)--g’(x)
Then 2G (X/, A I) --> (T, q) is a homotopy between g and 2g’.

Theorem 2.2. If (X, A) is a compact pair with dim (X-A)<2n-1,
the homotopy classes [a} of maps a of (X, A) into (T, q) form an
abelian group with the law of composition [a}/ [B}--[a<fB},
where f is an arbitrary normalization of a B.

Proof. D] Theorem 3.5 implies that a normalization for af
exists. Lemma 2.1 of the present note shows that [a<f>fl} does
not depend on the choice of a e [a}, B e [B} nor upon the normali-
zation f involved. Therefore, the class [a< f>B} is uniquely
determined by the class [a} and [B}.


