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81. Introduction. The well-known Green formula for functions
of two variables, may be stated as follows:
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where w(z, ¥) and v(z, y) are functions of class C? and R is a bounded
planar region with boundary C. Then, from (1) we have

Theorem 1. If u and v are harmonic in R, then
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In §2, we shall prove a theorem which is a sort of inverse of
Theorem I. For the proof, we use the method due to Beckenbach
[1]. On the other hand it is known that

Theorem 2. If u(x, y) is harmonic in a planar domain R, then
for any closed circle C(x, y; r) contained in R.
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Further Levi [2] and Tonelli [8] proved that if u(z, y) is con-
tinuous in R and (8) holds for any closed circle C contained in
R, then u(z, y) is harmonic in E.

We prove a similar theorem in §8.

§2. Lemma 1 (Saks [4]). If u(x,y) belongs to the class C*
and for any closed circle C(x, y; r) contained in D
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then, u(z, y) is harmonic in D.
As an inverse of Theorem 1, we prove
Theorem 1. If u(x,y) and v(x,y) belong to the class C* in «a
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