173. Dirichlet Problem on Riemann Surfaces. II (Harmonic Measures of the Set of Accessible Boundary Points)

By Zenjiro Kuramochi
Mathematical Institute, Osaka University
(Comm. by K. Kunugi, m.J.A., Nov. 12, 1954)

Let \underline{R} be a null-boundary Riemann surface with A-topology ${ }^{1)}$ and let R be a positive boundary Riemann surface given as a covering surface over \underline{R}. When a curve L on R converges to the boundary of R and its projection \underline{L} on \underline{R} tends to a point of \underline{R}^{*}, we say that L determines an accessible boundary point (A.B.P.) relative to \underline{R}^{*}. In the following we denote the set of all A.B.P.'s by $\mathfrak{U}\left(R, \underline{R}^{*}\right)$. We consider continuous super-harmonic function $v(z)$ in R such that $0 \leqq v(z) \leqq 1$ and $\lim v(z)=1$ when z tends to the boundary along every curve determining an A.B.P. and we denote by $\mu\left(R, \mathfrak{Y}\left(R, \underline{R}^{*}\right)\right)$ the lower envelope of above functions which is harmonic in R on account of Perron-Brelot's theorem. We also consider $\mathfrak{H}\left(R^{\infty}, \underline{R}^{*}\right)$ and $\mu\left(R^{\infty}, \mathfrak{H}\left(R^{\infty}, \underline{R}^{*}\right)\right)$ defined similarly on R^{∞}. In the following we assume that the universal covering surface of the projection of R on \underline{R} is hyperbolic. Then there exists a nullboundary Riemann surface \underline{R}^{\prime} such that the projection of $R \subset \underline{R}^{\prime}, \underline{R}^{\prime}$ $\subset \underline{R}$ and that $\underline{R}^{\prime \infty}$ is hyperbolic. We map $\underline{R}^{\prime \infty}$ and R^{∞} conformally onto $U_{\eta}:|\eta|<1$ and $U_{\xi}:|\xi|<1$ respectively. Let l_{ξ} be a curve in U_{ξ} determining an A.B.P. of R^{∞}, whose projection on \underline{R}^{\prime}. Then we see that l_{ξ} converges to a point $\xi_{0}:\left|\xi_{0}\right|=1$ and $\underline{z}=\underline{z}(\xi): U_{\xi} \rightarrow R \rightarrow \underline{R}^{\prime}$ has an angular limit at ξ_{0}. It follows that $\underline{z}=\underline{z}(\xi)$ has angular limits at every point of A_{ξ}^{\prime} with respect to \underline{R}^{\prime}, where A_{ξ}^{\prime} is the set of points ξ^{\prime} on $|\xi|=1$ such that at least one curve determining A.B.P. with projection in \underline{R} terminates at ξ^{\prime}.

Let $\left\{\boldsymbol{R}_{\lambda}^{\prime}\right\}$ be an exhaustion of \underline{R}^{\prime} and $\Delta_{t, n, n}(\theta)$ be the set such that $\frac{1}{n} \leqq\left|\xi-e^{i \theta}\right|<\frac{1}{m}$ and $\left|\arg \left(1-e^{-i \theta} \xi\right)\right|<\frac{\pi}{2}-\frac{1}{l}$ and let $\delta(f(\xi))$ be the diameter of the set $f(\xi): \xi \in J_{t, m, n}(\theta)$ with respect to the A topology. Then we have

$$
A_{\xi}^{\prime}=\varepsilon \varepsilon_{\theta}\left[\sum_{\lambda} \prod_{i} \prod_{k} \sum_{m} \prod_{n} \delta(f(\xi)) \leqq \frac{1}{k} \leftarrow \xi \in \Delta_{l, m, m+n}(\theta)\right]
$$

Since $\delta(f(\xi))$ is continuous with respect to θ for fixed l, m and n, this shows that A_{ξ}^{\prime} is a Borel set.
M. Ohtsuka has proved the next

1) See, Dirichlet problem. I.
