167. A Note on Strongly (C, a)-ergodic Semi-Group of Operators

By Isao MIYADERA

Mathematical Institute, Tokyo Metropolitan University, Japan (Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1954)

Let $\{T(\xi): 0 < \xi < \infty\}$ be a semi-group of operators satisfying the following assumptions:

(i) For each ξ , $0 < \xi < \infty$, $T(\xi)$ is a bounded linear operator from a complex Banach space X into itself and

$$(1)$$
 $T(\xi+\eta)=T(\xi)T(\eta)$

(ii) $T(\xi)$ is strongly measurable in $(0, \infty)$.

$$(\mathrm{iii}) \qquad \qquad \int_{_{0}}^{^{1}} ||\, T(\xi)x\,||\, d\xi < \infty \qquad \qquad for \ each \ x \in X$$

We may further assume without loss of generality that

(iv) $||T(\xi)||$ is bounded at $\xi = \infty$.

If $T(\xi)$ satisfies the condition

$$(\mathbf{v}) \qquad \lim_{\lambda \to \infty} \lambda \int_{0}^{\infty} e^{-\lambda \xi} T(\xi) x d\xi = x \qquad for \ each \ x \in X,$$

then $T(\xi)$ is said to be strongly *Abel-ergodic* to the identity at zero. If, instead of (v), $T(\xi)$ satisfies the stronger condition

$$(\mathbf{v}') \qquad \lim_{\xi \to 0} \alpha \xi^{-\alpha} \int_{0}^{\xi} (\xi - \eta)^{\alpha - 1} T(\eta) x d\eta = x \qquad for \ each \ x \in X,$$

then $T(\xi)$ is said to be strongly (C, α) -ergodic to the identity at zero.

Recently R.S. Phillips [1] and the present author [3] have independently proved the following

Theorem 1. A necessary and sufficient condition that a semigroup of operators strongly Abel-ergodic to the identity at zero be of operators strongly (C, 1)-ergodic to the identity at zero is that there exists a positive number M such that

(2)
$$\sup_{k\geq 1,\lambda>0} \left\| \frac{1}{k} \sum_{i=1}^{k} [\lambda R(\lambda; A)]^{i} \right\| \leq M.$$

In this note we shall give a generalization of Theorem 1 which is stated as follows:

Theorem 2. Let a be a positive integer. A necessary and sufficient condition that a semi-group of operators strongly Abel-ergodic to the identity at zero be of operators strongly (C, a)-ergodic to the identity at zero is that there exists a positive number M such that (3) $\sup_{\lambda>0, k\geq\alpha} \left\| \frac{a}{k(k-1)\cdots(k-a+1)} \sum_{i=1}^{k-a+1} \frac{(k-i)!}{(k-a+1-i)!} [\lambda R(\lambda; A)]^i \right\| \leq M.$