200. Dirichlet Problem on Riemann Surfaces. IV (Covering Surfaces of Finite Number of Sheets)

By Zenjiro Kuramochi
Mathematical Institute, Osaka University
(Comm. by K. Kunugi, m.J.A., Dec. 13, 1954)

Let \underline{R} be a null-boundary Riemann surface with A-topology and let R be a covering surface over \underline{R} and let L be a curve in R determining an accessible boundary point (A.B.P.) \wp with projection p. Denote by $V_{n}(p)$ the neighbourhood of p with diameter $\frac{1}{n}$ and denote by \mathfrak{B}_{n} the set of R lying over $V_{n}(p)$, which is composed of at most enumerably infinite number of domains $D_{n}^{i}(p)(i=1,2, \ldots)$.

Associated domain. Let $D_{n}^{i}(\wp)$ be a domain, over $V_{n}(p)$, containing an endpart of L. Two arcs L_{1} and L_{2} determine the same A.B.P., if and only if, for any number n, two associated domains of L_{1} and L_{2} are the same. This definition of A.B.P. is clearly equivalent to that of O. Teichmüller. Denote by $n(\underline{z}): \underline{z} \in \underline{R}$ the number of times when \underline{z} is coverd by R. Then it is clear that $n(\underline{z})$ is lower semicontinuous. When $\varlimsup_{z \in \underline{R}} n(\underline{z})>1$, non accessible boundary points are complicated and in our case, it is sufficient to consider only $\mathfrak{H}(R, \underline{R})$, where $\mathfrak{H}(R, \underline{R})$ is the set of all A.B.P.'s.

Barrier. Let $B(z): z \in R$ be a function such that $B(z)$ is non negative continuous super-harmonic function and that $\lim _{z \rightarrow \infty} B(z)=0$ and moreover for every associated domain $D_{m}(\wp)$, there exists a number δ_{m} with the property that $\inf _{z \oplus D_{m}(0)} B(z)>\delta_{m}\left(\delta_{m}>0\right)$. We call $B(z)$ a barrier at \wp. It is well known that \wp is regular for Dirichlet problem of R, if and only if, a barrier exists at \wp, under the condition that R is a covering surface of D-type over \underline{R}.

Lemma. Let R be a covering surface of D-type over \underline{R} and let \wp be an A.B.P. and let $D_{n}(\wp)$ be an associated domain of §. We denote by proj $D_{n}(\wp)$ the projection of $D_{n}(\wp)$. If proj \wp is regular for $\operatorname{proj} D_{n}(\wp)$, then \wp is regular with respect to R.

In fact, let B (proj $\wp)$ be a barrier of proj \wp with respect to proj $D_{n}(\wp)$. Then there exists a number δ such that $B(\operatorname{proj} z)>\delta$, when $\underline{z} \notin \operatorname{proj} D_{m}(\wp)$, where $m>n$, for given $D_{m}(\wp)$. Put $B(z)$ $=\operatorname{Min}(\delta, B(\operatorname{proj} z))$ in $D_{m}(\wp)$ and $B(z)=\delta$ in $R-D_{m}(\wp)$. Then $B(z)$ is clearly a barrier of \wp with respect to R. Thus we have at once the following.

1) See, " Dirichlet problem. III".
