200. Dirichlet Problem on Riemann Surfaces. IV (Covering Surfaces of Finite Number of Sheets)

By Zenjiro KURAMOCHI

Mathematical Institute, Osaka University (Comm. by K. Kunugi, M.J.A., Dec. 13, 1954)

Let \underline{R} be a null-boundary Riemann surface with A-topology and let R be a covering surface over \underline{R} and let L be a curve in R determining an accessible boundary point (A.B.P.) P with projection P. Denote by $V_n(P)$ the neighbourhood of P with diameter $\frac{1}{n}$ and denote by \mathfrak{B}_n the set of R lying over $V_n(P)$, which is composed of at most enumerably infinite number of domains $D_n^i(P)$ $(i=1,2,\ldots)$.

Associated domain. Let $D_n^i(\wp)$ be a domain, over $V_n(p)$, containing an endpart of L. Two arcs L_1 and L_2 determine the same A.B.P., if and only if, for any number n, two associated domains of L_1 and L_2 are the same. This definition of A.B.P. is clearly equivalent to that of O. Teichmüller. Denote by $n(\underline{z}):\underline{z}\in\underline{R}$ the number of times when \underline{z} is coverd by R. Then it is clear that $n(\underline{z})$ is lower semicontinuous. When $\overline{\lim}_{z\in\underline{R}} n(\underline{z})>1$, non accessible boundary points are complicated and in our case, it is sufficient to consider only $\mathfrak{A}(R,\underline{R})$, where $\mathfrak{A}(R,R)$ is the set of all A.B.P.'s.

Barrier. Let $B(z): z \in R$ be a function such that B(z) is non negative continuous super-harmonic function and that $\lim_{z \to \rho} B(z) = 0$ and moreover for every associated domain $D_m(\rho)$, there exists a number δ_m with the property that $\inf_{z \in D_m(\rho)} B(z) > \delta_m(\delta_m > 0)$. We call B(z) a barrier at ρ . It is well known that ρ is regular for Dirichlet problem of R, if and only if, a barrier exists at ρ , under the condition that R is a covering surface of P-type over R.

Lemma. Let R be a covering surface of D-type over \underline{R} and let \mathscr{D} be an A.B.P. and let $D_n(\mathscr{D})$ be an associated domain of \mathscr{D} . We denote by proj $D_n(\mathscr{D})$ the projection of $D_n(\mathscr{D})$. If proj \mathscr{D} is regular for proj $D_n(\mathscr{D})$, then \mathscr{D} is regular with respect to R.

In fact, let $B(\operatorname{proj} \mathcal{O})$ be a barrier of $\operatorname{proj} \mathcal{O}$ with respect to $\operatorname{proj} D_n(\mathcal{O})$. Then there exists a number δ such that $B(\operatorname{proj} z) > \delta$, when $\underline{z} \notin \operatorname{proj} D_m(\mathcal{O})$, where m > n, for given $D_m(\mathcal{O})$. Put $B(z) = \operatorname{Min}(\delta, B(\operatorname{proj} z))$ in $D_m(\mathcal{O})$ and $B(z) = \delta$ in $R - D_m(\mathcal{O})$. Then B(z) is clearly a barrier of \mathcal{O} with respect to R. Thus we have at once the following.

¹⁾ See, "Dirichlet problem. III".