194. Gentzen's Theorem on an Extended Predicate Calculus¹⁾

By Shôji MAEHARA

Mathematical Institute, University of Tokyo (Comm. by Z. SUETUNA, M.J.A., Dec. 13, 1954)

In this paper, I shall show that the corresponding theorem (cf. 2) to Gentzen's 'Hauptsatz'²⁾ on his 'Kalkül LK' is proved in case of the logical system — I shall call it L_0K — obtained from LK by additional admitting quantifiers $V^0\varphi$ (for all φ) and $\underline{\mathcal{F}}^0\varphi$ (there exists φ) where φ is a propositional variable.

1. The logical system L_0K

1.1. 'Formula'

As the definition of formula, we use the formation rule of formula obtained from that of the restricted predicate calculus for example, Kalkül LK—by adding to the latter the following item: If $\mathfrak{F}(a)$ is a formula, a is a free propositional variable without argument, φ is a bound propositional variable not contained in $\mathfrak{F}(a)$, and $\mathfrak{F}(\varphi)$ is the result of substituting φ for a throughout $\mathfrak{F}(a)$, then $V^{0}\varphi\mathfrak{F}(\varphi)$ and $\mathfrak{H}^{0}\varphi\mathfrak{F}(\varphi)$ are formulae.

The grade of a formula is the number (≥ 0) of occurrences of logical symbols (&, \lor , \supset , \neg , V, \mathcal{A} , V^0 , \mathcal{A}^0) in the formula, and the *degree* the number of occurrences of V^0 and \mathcal{A}^0 . For example, a formula of the restricted predicate calculus has the degree 0.

1.2. 'Sequent'

A sequent is a formal expression of the form

$$\mathfrak{A}_1,\ldots,\mathfrak{A}_\mu o\mathfrak{B}_1,\ldots,\mathfrak{B}_N$$

where $\mu, \nu \geq 0$ and $\mathfrak{A}_1, \ldots, \mathfrak{A}_{\mu}, \mathfrak{B}_1, \ldots, \mathfrak{B}_{\nu}$ are arbitrary formulae. The part $\mathfrak{A}_1, \ldots, \mathfrak{A}_{\mu}$ is called the *antecedent*, and $\mathfrak{B}_1, \ldots, \mathfrak{B}_{\nu}$ the *succedent* of the sequent.

1.3. 'Rules of inference'

As rules of inference we use ones obtained from those for Gentzen's LK, which are represented as the 'Schlussfiguren-Schemata', by adding the following

Additional rules of inference for L_0K

¹⁾ Mr. G. Takeuti had proved otherwise the same result, and afterwards the present proof was obtained.

²⁾ G. Gentzen: Untersuchungen über das logische Schliessen, Math. Zeitschr., **39**, 176-210, 405-431 (1935).